Tryb nocny
Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie MSI B250M MORTAR ARCTIC vs MSI B250M MORTAR

Dodaj do porównania
MSI B250M MORTAR ARCTIC
MSI B250M MORTAR
MSI B250M MORTAR ARCTICMSI B250M MORTAR
od 452 zł
Produkt jest niedostępny
od 205 zł
Produkt jest niedostępny
TOP sprzedawcy
Przeznaczeniegamingowagamingowa
SocketIntel LGA 1151Intel LGA 1151
Formatmicro-ATXmicro-ATX
Fazy zasilania6
Radiator VRM
Podświetlenie LED
Synchronizacja podświetleniaMSI Mystic Light SyncMSI Mystic Light Sync
Wymiary (WxS)244x244 mm244x244 mm
Chipset
ChipsetIntel B250Intel B250
BIOSAmiAmi
UEFI BIOS
Pamięć RAM
DDR44 banki(ów)4 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania2400 MHz2400 MHz
Maks. wielkość pamięci64 GB64 GB
Obsługa XMP
Interfejsy dyskowe
SATA 3 (6 Gb/s)6 szt.6 szt.
Złącze M.21 szt.1 szt.
Interfejs M.21xSATA/PCI-E 4x1xSATA/PCI-E 4x
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x2 szt.2 szt.
Liczba gniazd PCI-E 4x1 szt.
Liczba gniazd PCI-E 16x2 szt.1 szt.
Tryby PCI-E16x/4x
Obsługa PCI Express3.03.0
Obsługa CrossFire (AMD)
Stalowe złącza PCI-E
Złącza na płycie głównej
USB 2.02 szt.
USB 3.2 gen11 szt.
Wyjścia wideo
Wyjście DVIDVI-DDVI-D
Wyjście HDMI
DisplayPort
Zintegrowany układ audio
Układ audioRealtek ALC892Realtek ALC892
Dźwięk (liczba kanałów)7.17.1
Interfejsy sieciowe
LAN (RJ-45)1 Gb/s1 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANIntel I219-VIntel I219-V
Złącza na tylnym panelu
USB 2.02 szt.2 szt.
USB 3.2 gen13 szt.
USB 3.2 gen23 szt.
USB C 3.2 gen21 szt.
PS/22 szt.2 szt.
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin8 pin
Liczba złączy wentylatorów CPU4 szt.4 szt.
Data dodania do E-Katalogmarzec 2017styczeń 2017

Fazy zasilania

Liczba faz zasilania procesora przewidzianych na płycie głównej.

W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.

Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.

Radiator VRM

Obecność na płycie głównej osobnego radiatora do VRM.

VRM to moduł regulacji napięcia, który dostarcza energię z zasilacza komputera do procesora. Moduł ten obniża standardowe napięcie zasilacza (+5 lub +12 V) do niższej wartości niezbędnej do pracy procesora (zwykle nieco ponad 1 V). Przy dużych obciążeniach regulator napięcia może się bardzo nagrzać, a bez specjalistycznego układu chłodzenia może dojść do przegrzania, a nawet spalenia się części. Radiator VRM zmniejsza prawdopodobieństwo takich sytuacji; może być przydatny dla każdego procesora i jest wysoce pożądany, jeśli płyta ma być używana z wydajnym procesorem high-end (zwłaszcza podkręconym).

Liczba gniazd PCI-E 4x

Liczba gniazd PCI-E (PCI-Express) 4x znajdujących się na płycie głównej.

Magistrala PCI Express służy do podłączania różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Cyfra w nazwie oznacza liczbę linii PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. 4 linie PCI-E zapewniają szybkość transferu danych około 4 GB/s dla PCI-E 3.0 i 8 GB/s dla 4.0 (szczegółowe informacje na temat wersji można znaleźć w sekcji „Obsługa PCI Express”).

Ogólna zasada dla PCI-E mówi, że karta może być podłączona do gniazda z taką samą lub większą liczbą linii. Zatem w standardowym gnieździe PCI-E 4x można zainstalować karty na 1 lub 4 linie PCI Express. Należy jednak zauważyć, że nowoczesne płyty główne mają ponadwymiarowe gniazda - w szczególności PCI-E 4x, odpowiadające rozmiarem PCI-E 16x. O rodzaju takich gniazd w naszym katalogu wskazuje rzeczywista przepustowość, czyli wspomniany przykład będzie również zaliczany do PCI-E 4x. Jednocześnie do takich złączy fizycznie można podłączyć i peryferie na 16 kanałów PCI-E - należy jednak upewnić się, że przepustowość będzie wystarczająca do normalnej pracy takich urządzeń.

Liczba gniazd PCI-E 16x

Liczba gniazd PCI-E (PCI-Express) 16x znajdujących się na płycie głównej.

Magistrala PCI Express służy do podłączania różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Cyfra w nazwie oznacza liczbę linii PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. 16 linii to największa liczba występująca w nowoczesnych gniazdach i płytach PCI Express (możliwości techniczne dla większej liczby istnieją, jednak złącza byłyby zbyt nieporęczne). W związku z tym te gniazda są najszybsze: ich prędkość transmisji danych wynosi 16 GB/s dla wersji PCI-E 3.0 i 32 GB/s dla wersji 4.0 (więcej informacji na temat wersji można znaleźć w sekcji „Obsługa PCI Express”).

Osobno należy pamiętać, że to PCI-E 16x jest uważane za optymalne złącze do podłączania kart graficznych. Wybierając jednak płytę główną z kilkoma takimi gniazdami, warto zastanowić się nad obsługiwanymi przez nią trybami PCI-E (patrz niżej). Ponadto pamiętaj, że interfejs PCI Express umożliwia podłączenie kart z mniejszą liczbą linii do złączy z większą liczbą linii. W ten sposób PCI-E 16x będzie pasować do każdej karty PCI Express.

Warto też wspomnieć, że nowoczesne płyty główne mają ponadgabarytowe gniazda - w szczególności PCI-E 4x, odpowiadające rozmiarem PCI-E 16x. Jednak rodzaj gniazd PCI-E w naszym katalogu określa się na podstawie rzeczywistej przepustowości; więc pod PCI-E...16x kryją się tylko gniazda obsługujące prędkość na poziomie 16x.

Tryby PCI-E

Tryby pracy slotów PCI-E 16x obsługiwane przez płytę główną.

Aby uzyskać więcej informacji na temat tego interfejsu, patrz wyżej, a dane dotyczące trybów określa się w przypadku, jeśli na płycie jest kilka gniazd PCI-E 16x. Dane te określają, z jaką prędkością te gniazda mogą pracować przy jednoczesnym podłączaniu do nich kart rozszerzeń, ile linii może używać każdy z nich. Faktem jest, że całkowita liczba linii PCI-Express na każdej płycie głównej jest ograniczona i zwykle nie wystarczają one do jednoczesnej pracy wszystkich 16-kanałowych gniazd z pełną mocą. W związku z tym, podczas jednoczesnej pracy, prędkość nieuchronnie musi zostać ograniczona: na przykład zapis 16x / 4x / 4x oznacza, że płyta główna ma trzy 16-kanałowe gniazda, ale jeśli trzy karty graficzne są do nich podłączone jednocześnie, to drugie i trzecie gniazdo będą w stanie zapewnić prędkość tylko na poziomie PCI-E 4x. W związku z tym dla innej liczby slotów i liczby cyfr będą odpowiednie. Istnieją również karty z kilkoma trybami - na przykład 16x / 0x / 4 i 8x / 8x / 4x (0x oznacza, że slot w ogóle przestaje działać).

Należy zwrócić uwagę na parametr ten głównie podczas instalowania kilku kart graficznych jednocześnie: w niektórych przypadkach (na przykład podczas korzystania z technologii SLI), aby karty graficzne działały poprawnie, muszą być podłączone do gniazd z tą samą prędkością.

Obsługa CrossFire (AMD)

Obsługa przez płytę główną technologii AMD Crossfire.

Technologia ta pozwala na jednoczesne podłączenie do komputera wielu oddzielnych kart graficznych AMD i łączenie ich mocy obliczeniowej, odpowiednio zwiększając wydajność graficzną systemu w określonych zadaniach. W związku z tym funkcja ta oznacza, że płyta główna jest wyposażona w co najmniej dwa gniazda na karty graficzne - PCI-E 16x; ogólnie Crossfire umożliwia podłączenie do 4 pojedynczych kart.

Ta funkcjonalność jest szczególnie ważna w przypadku wymagających gier i „ciężkich” zadań, takich jak renderowanie 3D. Należy jednak mieć na uwadze, że aby móc korzystać z kilku kart graficznych, taką możliwość należy zapewnić również w aplikacji uruchomionej na komputerze. Dlatego w niektórych przypadkach jedna wydajna karta graficzna jest lepsza niż kilka stosunkowo prostych kart z taką samą całkowitą pamięcią VRAM.

Podobna technologia firmy NVIDIA nazywa się SLI (patrz poniżej). Crossfire różni się od niego głównie trzema punktami: możliwością łączenia kart graficznych z różnymi modelami procesorów graficznych (najważniejsze jest to, aby były one zbudowane na tej samej architekturze), brak konieczności stosowania dodatkowych kabli czy mostków (karty graficzne współpracują bezpośrednio przez magistralę PCI-E) oraz nieco mniejszym kosztem (co pozwala na wykorzystanie tej technologii nawet w niedrogich płytach głównych). Dzięki temu ostatniemu prawie wszystkie...płyty główne z SLI obsługują również Crossfire, ale nie odwrotnie.

Stalowe złącza PCI-E

Obecność na płycie głównej wzmocnionych stalowych złączy PCI-E.

Takie złącza można znaleźć głównie w gamingowych (patrz „Przeznaczenie”) i innych zaawansowanych typach płyt głównych zaprojektowanych do korzystania z wydajnych kart graficznych. Gniazda PCI-E 16x są zwykle wykonane ze stali, przeznaczone tylko dla takich kart graficznych; oprócz samego gniazda, jego mocowanie do płyty ma również wzmocnioną konstrukcję.

Ta cecha oferuje dwie kluczowe zalety w porównaniu z tradycyjnymi plastikowymi złączami. Po pierwsze, pozwala na instalację nawet dużych i ciężkich kart graficznych tak bezpiecznie, jak to możliwe, bez ryzyka uszkodzenia gniazda lub karty. Po drugie, metalowa wtyczka działa jak ekran ochronny i zmniejsza prawdopodobieństwo wystąpienia zakłóceń; jest to szczególnie przydatne w przypadku korzystania z wielu kart graficznych zainstalowanych obok siebie, "side-by-side".

USB 2.0

Liczba złączy USB 2.0 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej, znajdujących się na przednim panelu obudowy. Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się na przednim panelu, które jest w stanie obsłużyć.

W szczególności USB 2.0 jest najstarszą, szeroko używaną wersją. Zapewnia prędkość transmisji danych do 480 Mb/s, jest uważana za przestarzałą i jest stopniowo zastępowana przez bardziej zaawansowane standardy, przede wszystkim USB 3.2 gen1 (dawniej USB 3.0). Niemniej jednak wiele urządzeń peryferyjnych jest nadal produkowanych pod złącze USB 2.0: możliwości tego interfejsu w zupełności wystarczą dla większości urządzeń, które nie wymagają dużych prędkości połączenia.

USB 3.2 gen1

Liczba złączy USB 3.2 gen1 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej umieszczonych na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się w obudowie, które jest w stanie obsłużyć. Przy tym należy pamiętać, że w tym przypadku mówimy o tradycyjnych złączach USB A; złącza dla nowszych USB-C są omawiane są w charakterystykach osobno.

Co się tyczy konkretnie wersji USB 3.2 gen1 (wcześniej znany jako USB 3.1 gen1 i USB 3.0), to ona zapewnia prędkość transmisji danych do 4,8 Gb/s i wyższą moc zasilania niż wcześniejszy standard USB 2.0. Jednocześnie technologia USB Power Delivery, umożliwiająca osiągnięcie mocy do 100 W, zwykle nie jest obsługiwana przez złącza tej wersji dla USB A (choć można ją zaimplementować w złączach na USB-C).
MSI B250M MORTAR często porównują