Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie MSI B350M PRO-VD PLUS vs Asus PRIME B350M-K

Dodaj do porównania
MSI B350M PRO-VD PLUS
Asus PRIME B350M-K
MSI B350M PRO-VD PLUSAsus PRIME B350M-K
od 396 zł
Produkt jest niedostępny
od 343 zł
Produkt jest niedostępny
TOP sprzedawcy
Przeznaczeniedo domu / biurado domu / biura
SocketAMD AM4AMD AM4
Formatmicro-ATXmicro-ATX
Fazy zasilania6
Podświetlenie LED
Wymiary (WxS)244x206 mm226x221 mm
Chipset
ChipsetAMD B350AMD B350
BIOSAmiAmi
UEFI BIOS
Pamięć RAM
DDR42 banki(ów)2 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania3200 MHz3200 MHz
Maks. wielkość pamięci32 GB32 GB
Interfejsy dyskowe
SATA 3 (6 Gb/s)4 szt.4 szt.
Złącze M.21 szt.
Interfejs M.21xSATA/PCI-E 4x
Zintegrowany kontroler RAID
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x2 szt.2 szt.
Liczba gniazd PCI-E 16x1 szt.1 szt.
Obsługa PCI Express3.03.0
Stalowe złącza PCI-E
Złącza na płycie głównej
USB 2.02 szt.
USB 3.2 gen11 szt.
Wyjścia wideo
Wyjście D-Sub (VGA)
Wyjście DVIDVI-DDVI-D
Zintegrowany układ audio
Układ audioRealtek ALC887Realtek ALC887
Dźwięk (liczba kanałów)7.17.1
Interfejsy sieciowe
LAN (RJ-45)1 Gb/s1 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANRealtek 8111HRealtek RTL8111H
Złącza na tylnym panelu
USB 2.02 szt.2 szt.
USB 3.2 gen14 szt.
USB 3.2 gen24 szt.
PS/21 szt.2 szt.
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin8 pin
Liczba złączy wentylatorów CPU2 szt.2 szt.
Data dodania do E-Kataloglipiec 2017kwiecień 2017
Glosariusz

Fazy zasilania

Liczba faz zasilania procesora przewidzianych na płycie głównej.

W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.

Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.

Podświetlenie LED

Obecność na płycie głównej własnego podświetlenia LED. Funkcja ta nie wpływa na funkcjonalność płyty głównej, ale nadaje jej niecodzienny wygląd. Dlatego nie ma sensu, aby zwykły użytkownik specjalnie szukał takiego modelu (potrzebuje płyty głównej bez podświetlenia), ale dla miłośników modowania podświetlenie może być bardzo przydatne.

Podświetlenie LED może mieć postać osobnych świateł lub pasków LED, wykonane w różnych kolorach (czasem z możliwością wyboru kolorów) i obsługiwać dodatkowe efekty - mruganie, migotanie, synchronizację z innymi komponentami (patrz „Synchronizacja podświetlenia”) itp. Specyficzne możliwości zależą od modelu płyty głównej.

Wymiary (WxS)

Wymiary płyty głównej na wysokość i szerokość. Zakłada się, że tradycyjne rozmieszczenie płyt głównych jest pionowe, dlatego w tym przypadku jeden z wymiarów nazywa się nie długością, jednak wysokością.

Rozmiary płyt głównych zależą w dużej mierze od ich współczynników kształtu (patrz wyżej), jednak rozmiar konkretnej płyty może nieco różnić się od standardu przyjętego dla tego współczynnika kształtu. Ponadto zwykle łatwiej jest wyjaśnić wymiary zgodnie z charakterystyką konkretnej płyty głównej niż szukać lub przywoływać ogólne informacje na temat współczynnika kształtu. Dlatego dane dotyczące rozmiaru są podawane nawet dla modeli, które są w pełni zgodne ze standardem.

Trzeci wymiar – grubość – jest z wielu powodów uważany za mniej ważny, dlatego często jest pomijany.

Złącze M.2

Liczba złączy M.2 przewidzianych w konstrukcji płyty głównej. Istnieją płyty główne na 1 złącze M.2, na 2 złącza, 3 złącza lub więcej.

Złącze M.2 jest przeznaczone do podłączenia zaawansowanych urządzeń wewnętrznych w miniaturowym formacie — w szczególności szybkich dysków SSD, a także kart rozszerzeń, takich jak moduły Wi-Fi i Bluetooth. Jednak złącza zaprojektowane do podłączenia tylko urządzeń peryferyjnych (Key E) nie są zaliczane do liczby. Obecnie jest to jeden z najnowocześniejszych i najbardziej zaawansowanych sposobów podłączenia podzespołów. Warto jednak wziąć pod uwagę, że przez to złącze można podłączać różne interfejsy - SATA lub PCI-E, i nie koniecznie oba na raz. Aby uzyskać szczegółowe informacje, zobacz „Interfejs M.2”; tutaj należy dodać, że SATA ma niską prędkość i jest używany głównie do budżetowych dysków, podczas gdy PCI-E jest używany do zaawansowanych modułów półprzewodnikowych i nadaje się również do innych typów wewnętrznych urządzeń peryferyjnych.

W związku z tym liczba M.2 to liczba podzespołów tego formatu, które można jednocześnie podłączyć do płyty głównej. Jednocześnie wiele współczesnych płyt głównych, szczególnie tych ze średniej i wyższej półki, wyposażonych jest w dwa lub więcej złączy M.2 z obsługą PCI-E.

Interfejs M.2

Interfejsy elektryczne (logiczne) realizowane poprzez fizyczne złącza M.2 na płycie głównej.

Więcej informacji na temat takich złączy można znaleźć powyżej. Tutaj należy pamiętać, że mogą współpracować z dwoma typami interfejsów:
  • SATA to standard pierwotnie stworzony dla dysków twardych. Zazwyczaj M.2 obsługuje najnowszą wersję, SATA 3; jednak nawet ona znacznie ustępuje PCI-E pod względem szybkości (600 MB/s) i funkcjonalności (tylko dyski);
  • PCI-E (Inaczej NVMe) to najpopularniejszy nowoczesny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Nadaje się do różnych kart rozszerzeń (takich jak karty bezprzewodowe) i pamięci masowej, a prędkości PCI-E pozwalają w pełni wykorzystać potencjał nowoczesnych dysków SSD. Maksymalna prędkość transmisji danych zależy od wersji tego interfejsu i liczby linii. W nowoczesnych złączach M.2 można znaleźć wersje PCI-E 3.0 i 4.0, o prędkościach odpowiednio około 1 GB/s i 2 GB/s na linię; a liczba linii może wynosić 1, 2 lub 4 (odpowiednio PCI-E 1x, 2x i 4x)
Konkretnie sam interfejs M.2 w charakterystyce płyt głównych jest wskazywany przez liczbę samych złączy i typ interfejsów przewidzianych w każdej z nich. Na przykład notacja „3xSATA / PCI-E 4x” oznacza trzy złącza, które mogą pracować zarówno w formatach SATA, jak i PCI-E 4x; a oznaczenie „1xSATA / PCI-E 4x, 1xPCI-E 2x” oznacza dwa złącza, z których jedno działa jako SATA lub PCI-E 4x, a drugie tylko jako PCI-E 2x.

Stalowe złącza PCI-E

Obecność na płycie głównej wzmocnionych stalowych złączy PCI-E.

Takie złącza można znaleźć głównie w gamingowych (patrz „Przeznaczenie”) i innych zaawansowanych typach płyt głównych zaprojektowanych do korzystania z wydajnych kart graficznych. Gniazda PCI-E 16x są zwykle wykonane ze stali, przeznaczone tylko dla takich kart graficznych; oprócz samego gniazda, jego mocowanie do płyty ma również wzmocnioną konstrukcję.

Ta cecha oferuje dwie kluczowe zalety w porównaniu z tradycyjnymi plastikowymi złączami. Po pierwsze, pozwala na instalację nawet dużych i ciężkich kart graficznych tak bezpiecznie, jak to możliwe, bez ryzyka uszkodzenia gniazda lub karty. Po drugie, metalowa wtyczka działa jak ekran ochronny i zmniejsza prawdopodobieństwo wystąpienia zakłóceń; jest to szczególnie przydatne w przypadku korzystania z wielu kart graficznych zainstalowanych obok siebie, "side-by-side".

USB 2.0

Liczba złączy USB 2.0 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej, znajdujących się na przednim panelu obudowy. Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się na przednim panelu, które jest w stanie obsłużyć.

W szczególności USB 2.0 jest najstarszą, szeroko używaną wersją. Zapewnia prędkość transmisji danych do 480 Mb/s, jest uważana za przestarzałą i jest stopniowo zastępowana przez bardziej zaawansowane standardy, przede wszystkim USB 3.2 gen1 (dawniej USB 3.0). Niemniej jednak wiele urządzeń peryferyjnych jest nadal produkowanych pod złącze USB 2.0: możliwości tego interfejsu w zupełności wystarczą dla większości urządzeń, które nie wymagają dużych prędkości połączenia.

USB 3.2 gen1

Liczba złączy USB 3.2 gen1 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej umieszczonych na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się w obudowie, które jest w stanie obsłużyć. Przy tym należy pamiętać, że w tym przypadku mówimy o tradycyjnych złączach USB A; złącza dla nowszych USB-C są omawiane są w charakterystykach osobno.

Co się tyczy konkretnie wersji USB 3.2 gen1 (wcześniej znany jako USB 3.1 gen1 i USB 3.0), to ona zapewnia prędkość transmisji danych do 4,8 Gb/s i wyższą moc zasilania niż wcześniejszy standard USB 2.0. Jednocześnie technologia USB Power Delivery, umożliwiająca osiągnięcie mocy do 100 W, zwykle nie jest obsługiwana przez złącza tej wersji dla USB A (choć można ją zaimplementować w złączach na USB-C).

Kontroler LAN

Model kontrolera LAN zainstalowanego na płycie głównej.

Kontroler LAN zapewnia wymianę danych między płytą a portem (portami) sieciowym komputera. W związku z tym zarówno ogólna charakterystyka, jak i indywidualne cechy funkcjonalności sieciowej płyty głównej zależą od cech tego modułu: obsługa specjalnych technologii, jakość połączenia w przypadku niestabilnej komunikacji itp. Znając model kontrolera LAN, możesz znaleźć szczegółowe dane na ten temat - w tym praktyczne recenzje; informacje te rzadko są potrzebne zwykłemu użytkownikowi, jednak mogą być przydatne dla entuzjastów gier online, a także do niektórych konkretnych zadań.

W związku z tym model kontrolera LAN jest sprawdzany głównie w tych przypadkach, gdy jest to dość zaawansowane rozwiązanie, zauważalnie przewyższające standardowe modele. Takie rozwiązania w dzisiejszych czasach produkowane są głównie pod markami Intel(średni poziom), Realtek(stosunkowo proste modele), Aquntia i Killer(w większości zaawansowane rozwiązania).
MSI B350M PRO-VD PLUS często porównują
Asus PRIME B350M-K często porównują