Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie Asus Maximus X Hero vs Asus Maximus X Hero (Wi-Fi AC)

Dodaj do porównania
Asus Maximus X Hero
Asus Maximus X Hero (Wi-Fi AC)
Asus Maximus X HeroAsus Maximus X Hero (Wi-Fi AC)
od 1 395 zł
Produkt jest niedostępny
od 1 400 zł
Produkt jest niedostępny
TOP sprzedawcy
Główne
Przyciski aktualizacji BIOS-u i resetowania pamięci CMOS-pamięci na tylnym panelu.
Przyciski aktualizacji BIOS-u i resetowania pamięci CMOS-pamięci na tylnym panelu.
Przeznaczeniedo gier (overclocking)do gier (overclocking)
SocketIntel LGA 1151 v2Intel LGA 1151 v2
FormatATXATX
Fazy zasilania10
Radiator VRM
Podświetlenie LED
Synchronizacja podświetleniaAsus Aura SyncAsus Aura Sync
Wymiary (WxS)305x244 mm305x244 mm
Chipset
ChipsetIntel Z370Intel Z370
BIOSAmiAmi
UEFI BIOS
Pamięć RAM
DDR44 banki(ów)4 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania4133 MHz4133 MHz
Maks. wielkość pamięci64 GB64 GB
Obsługa XMP
Interfejsy dyskowe
SATA 3 (6 Gb/s)6 szt.6 szt.
Złącze M.22 szt.2 szt.
Interfejs M.21xSATA/PCI-E 4x, 1xPCI-E 4x1xSATA/PCI-E 4x, 1xPCI-E 4x
Chłodzenie dysku SSD M.2
Zintegrowany kontroler RAID
 /RAID 0, RAID 1, RAID 5, RAID 10/
 /RAID 0, RAID 1, RAID 5, RAID 10/
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x3 szt.3 szt.
Liczba gniazd PCI-E 4x1 szt.
Liczba gniazd PCI-E 8x1 szt.
Liczba gniazd PCI-E 16x3 szt.1 szt.
Tryby PCI-E16x/0x/4x, 8x/8x/4x
Obsługa PCI Express3.03.0
Obsługa CrossFire (AMD)
Obsługa SLI (NVIDIA)
Stalowe złącza PCI-E
Złącza na płycie głównej
USB 2.02 szt.
USB 3.2 gen11 szt.
USB 3.2 gen21 szt.
Wyjścia wideo
Wyjście HDMI
DisplayPort
Zintegrowany układ audio
Układ audioSupremeFXSupremeFX
Dźwięk (liczba kanałów)7.17.1
Optyczne S/P-DIF
Interfejsy sieciowe
Wi-FiWi-Fi 5 (802.11aс)
LAN (RJ-45)1 Gb/s1 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANIntel I219VIntel I219V
Złącza na tylnym panelu
USB 2.02 szt.2 szt.
USB 3.2 gen14 szt.
USB 3.2 gen21 szt.
5 szt. /4xGen 1, 1xGen 2/
USB C 3.2 gen21 szt.
BIOS FlashBack
Clear CMOS
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin8 pin
Liczba złączy wentylatorów CPU7 szt.7 szt.
Data dodania do E-Katalogpaździernik 2017październik 2017

Fazy zasilania

Liczba faz zasilania procesora przewidzianych na płycie głównej.

W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.

Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.

Liczba gniazd PCI-E 4x

Liczba gniazd PCI-E (PCI-Express) 4x znajdujących się na płycie głównej.

Magistrala PCI Express służy do podłączania różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Cyfra w nazwie oznacza liczbę linii PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. 4 linie PCI-E zapewniają szybkość transferu danych około 4 GB/s dla PCI-E 3.0 i 8 GB/s dla 4.0 (szczegółowe informacje na temat wersji można znaleźć w sekcji „Obsługa PCI Express”).

Ogólna zasada dla PCI-E mówi, że karta może być podłączona do gniazda z taką samą lub większą liczbą linii. Zatem w standardowym gnieździe PCI-E 4x można zainstalować karty na 1 lub 4 linie PCI Express. Należy jednak zauważyć, że nowoczesne płyty główne mają ponadwymiarowe gniazda - w szczególności PCI-E 4x, odpowiadające rozmiarem PCI-E 16x. O rodzaju takich gniazd w naszym katalogu wskazuje rzeczywista przepustowość, czyli wspomniany przykład będzie również zaliczany do PCI-E 4x. Jednocześnie do takich złączy fizycznie można podłączyć i peryferie na 16 kanałów PCI-E - należy jednak upewnić się, że przepustowość będzie wystarczająca do normalnej pracy takich urządzeń.

Liczba gniazd PCI-E 8x

Liczba gniazd znajdujących się na płycie głównej PCI-Express 8x. To ośmiokanałowa wersja pasa połączenia PCI-Express, o minimalnej przepustowości 16 Gb/s w jedną stronę (32 Gb/s w obu). Więcej informacji o standardzie PCI-Express zobacz "Gniazd PCI-E 1x".

Liczba gniazd PCI-E 16x

Liczba gniazd PCI-E (PCI-Express) 16x znajdujących się na płycie głównej.

Magistrala PCI Express służy do podłączania różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Cyfra w nazwie oznacza liczbę linii PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. 16 linii to największa liczba występująca w nowoczesnych gniazdach i płytach PCI Express (możliwości techniczne dla większej liczby istnieją, jednak złącza byłyby zbyt nieporęczne). W związku z tym te gniazda są najszybsze: ich prędkość transmisji danych wynosi 16 GB/s dla wersji PCI-E 3.0 i 32 GB/s dla wersji 4.0 (więcej informacji na temat wersji można znaleźć w sekcji „Obsługa PCI Express”).

Osobno należy pamiętać, że to PCI-E 16x jest uważane za optymalne złącze do podłączania kart graficznych. Wybierając jednak płytę główną z kilkoma takimi gniazdami, warto zastanowić się nad obsługiwanymi przez nią trybami PCI-E (patrz niżej). Ponadto pamiętaj, że interfejs PCI Express umożliwia podłączenie kart z mniejszą liczbą linii do złączy z większą liczbą linii. W ten sposób PCI-E 16x będzie pasować do każdej karty PCI Express.

Warto też wspomnieć, że nowoczesne płyty główne mają ponadgabarytowe gniazda - w szczególności PCI-E 4x, odpowiadające rozmiarem PCI-E 16x. Jednak rodzaj gniazd PCI-E w naszym katalogu określa się na podstawie rzeczywistej przepustowości; więc pod PCI-E...16x kryją się tylko gniazda obsługujące prędkość na poziomie 16x.

Tryby PCI-E

Tryby pracy slotów PCI-E 16x obsługiwane przez płytę główną.

Aby uzyskać więcej informacji na temat tego interfejsu, patrz wyżej, a dane dotyczące trybów określa się w przypadku, jeśli na płycie jest kilka gniazd PCI-E 16x. Dane te określają, z jaką prędkością te gniazda mogą pracować przy jednoczesnym podłączaniu do nich kart rozszerzeń, ile linii może używać każdy z nich. Faktem jest, że całkowita liczba linii PCI-Express na każdej płycie głównej jest ograniczona i zwykle nie wystarczają one do jednoczesnej pracy wszystkich 16-kanałowych gniazd z pełną mocą. W związku z tym, podczas jednoczesnej pracy, prędkość nieuchronnie musi zostać ograniczona: na przykład zapis 16x / 4x / 4x oznacza, że płyta główna ma trzy 16-kanałowe gniazda, ale jeśli trzy karty graficzne są do nich podłączone jednocześnie, to drugie i trzecie gniazdo będą w stanie zapewnić prędkość tylko na poziomie PCI-E 4x. W związku z tym dla innej liczby slotów i liczby cyfr będą odpowiednie. Istnieją również karty z kilkoma trybami - na przykład 16x / 0x / 4 i 8x / 8x / 4x (0x oznacza, że slot w ogóle przestaje działać).

Należy zwrócić uwagę na parametr ten głównie podczas instalowania kilku kart graficznych jednocześnie: w niektórych przypadkach (na przykład podczas korzystania z technologii SLI), aby karty graficzne działały poprawnie, muszą być podłączone do gniazd z tą samą prędkością.

USB 2.0

Liczba złączy USB 2.0 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej, znajdujących się na przednim panelu obudowy. Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się na przednim panelu, które jest w stanie obsłużyć.

W szczególności USB 2.0 jest najstarszą, szeroko używaną wersją. Zapewnia prędkość transmisji danych do 480 Mb/s, jest uważana za przestarzałą i jest stopniowo zastępowana przez bardziej zaawansowane standardy, przede wszystkim USB 3.2 gen1 (dawniej USB 3.0). Niemniej jednak wiele urządzeń peryferyjnych jest nadal produkowanych pod złącze USB 2.0: możliwości tego interfejsu w zupełności wystarczą dla większości urządzeń, które nie wymagają dużych prędkości połączenia.

USB 3.2 gen1

Liczba złączy USB 3.2 gen1 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej umieszczonych na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się w obudowie, które jest w stanie obsłużyć. Przy tym należy pamiętać, że w tym przypadku mówimy o tradycyjnych złączach USB A; złącza dla nowszych USB-C są omawiane są w charakterystykach osobno.

Co się tyczy konkretnie wersji USB 3.2 gen1 (wcześniej znany jako USB 3.1 gen1 i USB 3.0), to ona zapewnia prędkość transmisji danych do 4,8 Gb/s i wyższą moc zasilania niż wcześniejszy standard USB 2.0. Jednocześnie technologia USB Power Delivery, umożliwiająca osiągnięcie mocy do 100 W, zwykle nie jest obsługiwana przez złącza tej wersji dla USB A (choć można ją zaimplementować w złączach na USB-C).

USB 3.2 gen2

Liczba złączy USB 3.2 gen2 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej umieszczonych na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się w obudowie, które jest w stanie obsłużyć. Przy tym należy pamiętać, że w tym przypadku mówimy o tradycyjnych złączach USB A; złącza dla nowszych USB-C są omawiane są w charakterystykach osobno.

Jeśli chodzi o konkretną wersję USB 3.2 gen2 (wcześniej znaną jako USB 3.1 gen2 i USB 3.1), działa ona z prędkością do 10 Gb/s. Ponadto takie złącza mogą zapewniać obsługę technologii USB Power Delivery, która pozwala dostarczać moc zasilania do 100W na złącze; jednakże funkcja ta nie koniecznie musi występować, jej obecność należy sprawdzać osobno.

Wi-Fi

Wersja (standard) Wi-Fi obsługiwana przez moduł Wi-Fi płyty głównej. Głównym przeznaczeniem takich modułów, niezależnie od wersji, jest dostęp do internetu przez routery bezprzewodowe; jednak Wi-Fi może być również wykorzystywane do bezpośredniej komunikacji z innymi urządzeniami - na przykład do przesyłania materiałów (danych) z aparatu cyfrowego lub zdalnego sterowania nim.

W dzisiejszych czasach można spotkać obsługę różnych standardów Wi-Fi (nawet Wi-Fi 6 lub bardziej zaawansowaną wersję Wi-Fi 6E). Od tego szczegółu zależy przede wszystkim maksymalna szybkość połączenia. Przy tym różne wersje różnią się także używanymi zakresami; a są ze sobą kompatybilne, jeśli pokrywają się w użytych zakresach. Jednak różne wersje różnią się również stosowanymi zakresami; i są ze sobą kompatybilne, jeśli pokrywają się w użytych zakresach. Jednak moduły bezprzewodowe nowoczesnych płyt głównych często obsługują nie tylko standard Wi-Fi określony w specyfikacji, jednak także wcześniejsze; punkt ten nie przeszkadza wyjaśnić osobno, jednak w większości przypadków nie pojawiają się problemy ze zgodnością. Niemniej jednak, aby móc korzystać ze wszystkich funkcji danej wersji, muszą ją obsługiwać oba urządzenia - zarówno płyta główna, jak i urządzenie zewnętrzne.

Lista głównych wersji wygląda następująco:

— Wi-Fi 3 (802.11g). Najstarszy obecny standard występuje...w czystej postaci tylko na przestarzałych płytach głównych. Działa z prędkością do 54 Mb/s w paśmie 2,4 GHz.
— Wi-Fi 4 (802.11n). Dość popularny standard, który dopiero niedawno zaczął ustępować miejsca bardziej zaawansowanym opcjom. Obsługuje zarówno pasmo 2,4 GHz, jak i bardziej zaawansowane pasmo 5 GHz, a maksymalna szybkość transmisji danych wynosi 150 Mb/s na kanał (do 600 Mb/s przy 4 antenach).
— Wi-Fi 5 (802.11ac). Działa tylko na 5 GHz. Początkowo maksymalna teoretyczna szybkość przesyłania danych wynosiła 1300 Mb/s, jednak od 2016 roku stosowany jest standard 802.11ac Wave 2, gdzie wskaźnik ten został powiększony do 2,34 Gb/s.
— Wi-Fi 6 (802.11ax). Początkowo działa na dwóch pasmach - 2,4 GHz i 5 GHz - jednak specyfikacja tego standardu przewiduje wykorzystanie dowolnego zakresu pracy od 1 GHz do 7 GHz (gdy takie pasma staną się dostępne). Nominalna szybkość przesyłania danych wzrosła tylko o jedną trzecią w porównaniu z Wi-Fi 5, jednak szereg usprawnień zwiększających wydajność komunikacji pozwala osiągnąć znaczny wzrost rzeczywistej prędkości - teoretycznie nawet do 10 Gb/s, a nawet więcej.
— Wi-Fi 6E (802.11ax). Rozbudowana gałąź standardu Wi-Fi 6 z szybkością transmisji danych do 10 Gb/s. Standard Wi-Fi 6E technicznie nazywa się 802.11ax. Ale w przeciwieństwie do podstawowego Wi-Fi 6 o podobnej nazwie zapewnia pracę w nieobciążonym paśmie 6 GHz. Ogólnie rzecz biorąc, standard wykorzystuje 14 różnych pasm częstotliwości, oferując wysoką przepustowość przy wielu aktywnych połączeniach.
Asus Maximus X Hero często porównują