Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie Asus PRIME Z270-P vs Asus PRIME Z270-A

Dodaj do porównania
Asus PRIME Z270-P
Asus PRIME Z270-A
Asus PRIME Z270-PAsus PRIME Z270-A
od 286 zł
Produkt jest niedostępny
od 840 zł
Produkt jest niedostępny
TOP sprzedawcy
Przeznaczeniedo gier (overclocking)do gier (overclocking)
SocketIntel LGA 1151Intel LGA 1151
FormatATXATX
Fazy zasilania7
Radiator VRM
Podświetlenie LED
Wymiary (WxS)305x226 mm305x244 mm
Chipset
ChipsetIntel Z270Intel Z270
BIOSAmiAmi
UEFI BIOS
Pamięć RAM
DDR44 banki(ów)4 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania3866 MHz3866 MHz
Maks. wielkość pamięci64 GB64 GB
Obsługa XMP
Interfejsy dyskowe
SATA 3 (6 Gb/s)4 szt.6 szt.
Złącze M.22 szt.2 szt.
Interfejs M.22xSATA/PCI-E 4x1xSATA/PCI-E 4x, 1xPCI-E 4x
Zintegrowany kontroler RAID
 /RAID 0, RAID 1, RAID 5, RAID 10/
 /RAID 0, RAID 1, RAID 5, RAID 10/
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x4 szt.4 szt.
Liczba gniazd PCI-E 16x2 szt.3 szt.
Tryby PCI-E16x/4x16x/0x/4x, 8x/8x/4x
Obsługa PCI Express3.03.0
Obsługa CrossFire (AMD)
Obsługa SLI (NVIDIA)
Złącza na płycie głównej
USB 2.03 szt.3 szt.
USB 3.2 gen11 szt.1 szt.
Wyjścia wideo
Wyjście DVIDVI-DDVI-D
Wyjście HDMI
DisplayPort
Zintegrowany układ audio
Układ audioRealtek ALC887Realtek ALC S1220A
Dźwięk (liczba kanałów)7.17.1
Optyczne S/P-DIF
Interfejsy sieciowe
LAN (RJ-45)1 Gb/s1 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANRealtek RTL8111HIntel I219V
Złącza na tylnym panelu
USB 2.02 szt.
USB 3.2 gen14 szt.4 szt.
USB 3.2 gen21 szt.
USB C 3.2 gen21 szt.
PS/22 szt.1 szt.
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin8 pin
Liczba złączy wentylatorów CPU3 szt.6 szt.
Data dodania do E-Katalogstyczeń 2017styczeń 2017

Fazy zasilania

Liczba faz zasilania procesora przewidzianych na płycie głównej.

W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.

Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.

Podświetlenie LED

Obecność na płycie głównej własnego podświetlenia LED. Funkcja ta nie wpływa na funkcjonalność płyty głównej, ale nadaje jej niecodzienny wygląd. Dlatego nie ma sensu, aby zwykły użytkownik specjalnie szukał takiego modelu (potrzebuje płyty głównej bez podświetlenia), ale dla miłośników modowania podświetlenie może być bardzo przydatne.

Podświetlenie LED może mieć postać osobnych świateł lub pasków LED, wykonane w różnych kolorach (czasem z możliwością wyboru kolorów) i obsługiwać dodatkowe efekty - mruganie, migotanie, synchronizację z innymi komponentami (patrz „Synchronizacja podświetlenia”) itp. Specyficzne możliwości zależą od modelu płyty głównej.

Wymiary (WxS)

Wymiary płyty głównej na wysokość i szerokość. Zakłada się, że tradycyjne rozmieszczenie płyt głównych jest pionowe, dlatego w tym przypadku jeden z wymiarów nazywa się nie długością, jednak wysokością.

Rozmiary płyt głównych zależą w dużej mierze od ich współczynników kształtu (patrz wyżej), jednak rozmiar konkretnej płyty może nieco różnić się od standardu przyjętego dla tego współczynnika kształtu. Ponadto zwykle łatwiej jest wyjaśnić wymiary zgodnie z charakterystyką konkretnej płyty głównej niż szukać lub przywoływać ogólne informacje na temat współczynnika kształtu. Dlatego dane dotyczące rozmiaru są podawane nawet dla modeli, które są w pełni zgodne ze standardem.

Trzeci wymiar – grubość – jest z wielu powodów uważany za mniej ważny, dlatego często jest pomijany.

SATA 3 (6 Gb/s)

Liczba portów SATA 3 na płycie głównej.

SATA jest obecnie standardowym interfejsem do podłączania wewnętrznych urządzeń pamięci masowej (głównie HDD) i napędów optycznych. Do jednego takiego złącza można podłączyć jedno urządzenie, więc liczba portów SATA odpowiada liczbie wewnętrznych dysków/napędów, które można podłączyć do płyty głównej poprzez taki interfejs. Duża liczba (6 portów SATA i więcej) jest niezbędna w przypadku aktywnego korzystania z kilku dysków twardych i innych urządzeń peryferyjnych. Do użytku domowego wystarczy 4. SATA 3, jak sama nazwa wskazuje, to trzecia wersja tego interfejsu, pracująca z łączną prędkością około 6 Gb/s; użyteczna prędkość, biorąc pod uwagę redundancję przesyłanych danych, wynosi około 4,8 Mb/s (600 MB/s) - czyli dwa razy więcej niż w SATA 2.

Należy pamiętać, że różne standardy SATA są ze sobą w pełni kompatybilne w obu kierunkach: starsze dyski można podłączać do nowszych portów i odwrotnie. Tyle tylko, że szybkość przesyłania danych będzie ograniczona możliwościami wolniejszej wersji, a w niektórych przypadkach może być konieczna rekonfiguracja napędów za pomocą sprzętu (przełączniki, zworki) lub oprogramowania. Należy również powiedzieć, że SATA 3 jest obecnie najnowszą i najbardziej zaawansowaną odmianą SATA, jednak możliwości tego standardu nie są wystarczające, aby uwolnić pełny potencjał szybkich dysków SSD. Dlatego SATA 3 jest używany główn...ie do dysków twardych i niedrogich dysków SSD, szybsze dyski są podłączane do specjalnie zaprojektowanych złączy, takich jak M.2 lub U.2 (patrz niżej).

Interfejs M.2

Interfejsy elektryczne (logiczne) realizowane poprzez fizyczne złącza M.2 na płycie głównej.

Więcej informacji na temat takich złączy można znaleźć powyżej. Tutaj należy pamiętać, że mogą współpracować z dwoma typami interfejsów:
  • SATA to standard pierwotnie stworzony dla dysków twardych. Zazwyczaj M.2 obsługuje najnowszą wersję, SATA 3; jednak nawet ona znacznie ustępuje PCI-E pod względem szybkości (600 MB/s) i funkcjonalności (tylko dyski);
  • PCI-E (Inaczej NVMe) to najpopularniejszy nowoczesny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Nadaje się do różnych kart rozszerzeń (takich jak karty bezprzewodowe) i pamięci masowej, a prędkości PCI-E pozwalają w pełni wykorzystać potencjał nowoczesnych dysków SSD. Maksymalna prędkość transmisji danych zależy od wersji tego interfejsu i liczby linii. W nowoczesnych złączach M.2 można znaleźć wersje PCI-E 3.0 i 4.0, o prędkościach odpowiednio około 1 GB/s i 2 GB/s na linię; a liczba linii może wynosić 1, 2 lub 4 (odpowiednio PCI-E 1x, 2x i 4x)
Konkretnie sam interfejs M.2 w charakterystyce płyt głównych jest wskazywany przez liczbę samych złączy i typ interfejsów przewidzianych w każdej z nich. Na przykład notacja „3xSATA / PCI-E 4x” oznacza trzy złącza, które mogą pracować zarówno w formatach SATA, jak i PCI-E 4x; a oznaczenie „1xSATA / PCI-E 4x, 1xPCI-E 2x” oznacza dwa złącza, z których jedno działa jako SATA lub PCI-E 4x, a drugie tylko jako PCI-E 2x.

Liczba gniazd PCI-E 16x

Liczba gniazd PCI-E (PCI-Express) 16x znajdujących się na płycie głównej.

Magistrala PCI Express służy do podłączania różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Cyfra w nazwie oznacza liczbę linii PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. 16 linii to największa liczba występująca w nowoczesnych gniazdach i płytach PCI Express (możliwości techniczne dla większej liczby istnieją, jednak złącza byłyby zbyt nieporęczne). W związku z tym te gniazda są najszybsze: ich prędkość transmisji danych wynosi 16 GB/s dla wersji PCI-E 3.0 i 32 GB/s dla wersji 4.0 (więcej informacji na temat wersji można znaleźć w sekcji „Obsługa PCI Express”).

Osobno należy pamiętać, że to PCI-E 16x jest uważane za optymalne złącze do podłączania kart graficznych. Wybierając jednak płytę główną z kilkoma takimi gniazdami, warto zastanowić się nad obsługiwanymi przez nią trybami PCI-E (patrz niżej). Ponadto pamiętaj, że interfejs PCI Express umożliwia podłączenie kart z mniejszą liczbą linii do złączy z większą liczbą linii. W ten sposób PCI-E 16x będzie pasować do każdej karty PCI Express.

Warto też wspomnieć, że nowoczesne płyty główne mają ponadgabarytowe gniazda - w szczególności PCI-E 4x, odpowiadające rozmiarem PCI-E 16x. Jednak rodzaj gniazd PCI-E w naszym katalogu określa się na podstawie rzeczywistej przepustowości; więc pod PCI-E...16x kryją się tylko gniazda obsługujące prędkość na poziomie 16x.

Tryby PCI-E

Tryby pracy slotów PCI-E 16x obsługiwane przez płytę główną.

Aby uzyskać więcej informacji na temat tego interfejsu, patrz wyżej, a dane dotyczące trybów określa się w przypadku, jeśli na płycie jest kilka gniazd PCI-E 16x. Dane te określają, z jaką prędkością te gniazda mogą pracować przy jednoczesnym podłączaniu do nich kart rozszerzeń, ile linii może używać każdy z nich. Faktem jest, że całkowita liczba linii PCI-Express na każdej płycie głównej jest ograniczona i zwykle nie wystarczają one do jednoczesnej pracy wszystkich 16-kanałowych gniazd z pełną mocą. W związku z tym, podczas jednoczesnej pracy, prędkość nieuchronnie musi zostać ograniczona: na przykład zapis 16x / 4x / 4x oznacza, że płyta główna ma trzy 16-kanałowe gniazda, ale jeśli trzy karty graficzne są do nich podłączone jednocześnie, to drugie i trzecie gniazdo będą w stanie zapewnić prędkość tylko na poziomie PCI-E 4x. W związku z tym dla innej liczby slotów i liczby cyfr będą odpowiednie. Istnieją również karty z kilkoma trybami - na przykład 16x / 0x / 4 i 8x / 8x / 4x (0x oznacza, że slot w ogóle przestaje działać).

Należy zwrócić uwagę na parametr ten głównie podczas instalowania kilku kart graficznych jednocześnie: w niektórych przypadkach (na przykład podczas korzystania z technologii SLI), aby karty graficzne działały poprawnie, muszą być podłączone do gniazd z tą samą prędkością.

Obsługa SLI (NVIDIA)

Obsługa przez płytę główną technologii SLI firmy NVIDIA.

Technologia ta umożliwia jednoczesne podłączenie do komputera kilku oddzielnych kart graficznych NVIDIA i połączenie ich mocy obliczeniowej, odpowiednio zwiększając wydajność graficzną systemu w określonych zadaniach. W związku z tym funkcja ta oznacza, że płyta główna jest wyposażona w co najmniej dwa gniazda na karty graficzne - PCI-E 16x; ogólnie SLI umożliwia podłączenie do 4 oddzielnych pojedynczych kart.

Ta funkcjonalność jest szczególnie ważna w przypadku wymagających gier i „ciężkich” zadań, takich jak renderowanie 3D. Warto jednak pamiętać, że aby móc korzystać z kilku kart graficznych, taką możliwość należy zapewnić również w aplikacji uruchomionej na komputerze. Dlatego w niektórych przypadkach jedna wydajna karta graficzna jest lepsza niż kilka stosunkowo prostych kart z taką samą całkowitą pamięcią VRAM.

Podobna technologia firmy AMD nazywa się Crossfire (patrz wyżej). Główna różnica między tymi technologiami polega na tym, że SLI jest bardziej wymagające pod względem kompatybilności: działa tylko na kartach graficznych z tymi samymi modelami GPU (chociaż inne parametry - producent, zakres i częstotliwość pamięci wideo itp. - mogą być różne). Ponadto, karty graficzne w technologii SLI muszą być połączone kablem lub mostkiem (jedynymi wyjątkami są niektóre niedrogie modele); a wsparcie dla tej technologii jest nieco droższe niż w przypadku Cro...ssfire, więc jest rzadziej spotykane na płytach głównych (i głównie razem z rozwiązaniem AMD).

DisplayPort

Obecność u płyty głównej własnego wyjścia DisplayPort.

Takie wyjście jest przeznaczona do transmisji wideo z wbudowanej karty graficznej (patrz wyżej) lub procesor z zintegrowaną grafiką (podkreślamy, że wyświetlać na nim sygnał z karty graficznej przez chipset "płyty głównej" nie można). Co do konkretnie DisplayPort, to cyfrowy interfejs, stworzony specjalnie dla sprzętu komputerowego; w szczególności jest on standardem dla monitorów Apple, choć spotyka się i w telefonach innych producentów.

Konkretne możliwości DisplayPort mogą być różne, w zależności od wersji. Więcej o tym poniżej; tutaj należy pamiętać, że interfejs ten radzi sobie z sygnałem wideo w wysokiej rozdzielczości, a także ma ciekawą funkcję — podłączenie kilku monitorów do jednego wyjścia, konsekwentnie, "łańcuchem" (daisy chain).
Dynamika cen
Asus PRIME Z270-P często porównują