Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie ASRock Z370M Pro4 vs ASRock Z370 Pro4

Dodaj do porównania
ASRock Z370M Pro4
ASRock Z370 Pro4
ASRock Z370M Pro4ASRock Z370 Pro4
od 400 zł
Produkt jest niedostępny
od 380 zł
Produkt jest niedostępny
TOP sprzedawcy
Główne
Przygotowanie do instalacji anten Wi-Fi. Obsługa pamięci RAM do 4266 MHz. Obsługa pakietów kart graficznych AMD CrossFireX. Trzy złącza M.2. Staroszkolne gniazdo PCI.
Przeznaczeniedo gier (overclocking)do gier (overclocking)
SocketIntel LGA 1151 v2Intel LGA 1151 v2
Formatmicro-ATXATX
Fazy zasilania1010
Radiator VRM
Wymiary (WxS)244x244 mm305x224 mm
Chipset
ChipsetIntel Z370Intel Z370
BIOSAmiAmi
UEFI BIOS
Pamięć RAM
DDR44 banki(ów)4 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania4300 MHz4266 MHz
Maks. wielkość pamięci64 GB64 GB
Obsługa XMP
Interfejsy dyskowe
SATA 3 (6 Gb/s)6 szt.6 szt.
Złącze M.22 szt.
3 szt. /jeden do instalacji adaptera Wi-Fi/
Interfejs M.21xSATA/PCI-E 4x, 1xPCI-E 4x2xSATA/PCI-E 4x
Zintegrowany kontroler RAID
 /RAID 0, RAID 1, RAID 5, RAID 10/
 /RAID 0, RAID 1, RAID 5, RAID 10/
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x2 szt.4 szt.
Liczba gniazd PCI-E 16x2 szt.2 szt.
Tryby PCI-E16x/4x16x/4x
Obsługa PCI Express3.03.0
Liczba złączy PCI1 szt.
Obsługa CrossFire (AMD)
Złącza na płycie głównej
USB 2.02 szt.3 szt.
USB 3.2 gen12 szt.1 szt.
Wyjścia wideo
Wyjście D-Sub (VGA)
Wyjście DVIDVI-DDVI-D
Wyjście HDMI
Zintegrowany układ audio
Układ audioRealtek ALC892Realtek ALC892
Dźwięk (liczba kanałów)7.17.1
Interfejsy sieciowe
LAN (RJ-45)1 Gb/s1 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANIntel I219VIntel I219V
Złącza na tylnym panelu
USB 2.01 szt.
USB 3.2 gen14 szt.5 szt.
USB C 3.2 gen11 szt.1 szt.
PS/22 szt.1 szt.
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin8 pin
Liczba złączy wentylatorów CPU4 szt.4 szt.
Data dodania do E-Katalogpaździernik 2017październik 2017

Format

Współczynnik kształtu płyty głównej określa przede wszystkim jej wymiary fizyczne, odpowiednio szereg parametrów bezpośrednio z nimi związanych: rodzaj obudowy komputera, sposób montażu, rodzaj złącza zasilającego, liczba slotów na dodatkowe płyty (gniazda rozszerzeń) itp. W tej chwili istnieją takie główne czynniki kształtu płyt głównych:

- ATX. Jeden z najbardziej popularnych formatów płyt głównych do komputerów PC. Standardowy rozmiar takiej płyty to 30,5x24,4 cm, posiada aż 7 gniazd rozszerzeń oraz 24-pinowe lub (rzadziej w starszych modelach) 20-pinowe złącze zasilania.

- Micro-ATX. Lekko zmniejszona wersja formatu ATX, z bardziej kompaktowymi wymiarami (zwykle 24,4x24,4 cm) i odpowiednio mniejszą ilością miejsc na urządzenia peryferyjne - zwykle są tylko dwa gniazda na RAM, gniazda rozszerzeń - od dwóch do czterech. Jednak pomimo swoich ograniczonych wymiarów, takie płyty mogą być również używane w dość mocnych systemach.

- Mini-ITX. Płyty główne o kompaktowych wymiarach (17x17 cm). Zaprojektowane do użytku głównie w komputerach o małym formacie (SFF), prościej - w kompaktowych komputerach PC. Specyfikacje montażowe oraz lokalizacja złączy i gniazd są zgodne z obudową ATX. Zwykle mają jedno gniazdo rozszerzeń.

- mini-STX. Kolejny przedstawiciel kompaktowych formatów, zakładający rozmiar płyty 140...x147 mm. Zatem całkowity rozmiar jest prawie o jedną trzecią mniejszy niż w przypadku mini-ITX. Jednocześnie takie płyty główne często mają gniazda dla dość mocnych procesorów (na przykład gniazdo LGA 1151 dla chipów Intel Core) i są wykonane w oparciu o odpowiednie wartości TDP. Ale gniazd rozszerzeń z reguły nie ma.

- micro-DTX. Stosunkowo nowy kompaktowy format, który nie jest często spotykany, głównie wśród dość specyficznych płyt głównych - w szczególności modeli zaprojektowanych dla obudów w formacie PIO. Ta forma jest bardzo mała i lekka i umożliwia zamontowanie obudowy bezpośrednio za monitorem, na standardowym uchwycie VESA. Jedną z cech charakterystycznych płyt głównych dla takich systemów jest to, że karta graficzna jest instalowana wzdłuż płyty zamiast prostopadle - odpowiednio złącze PCI-E 16x (patrz poniżej) ma niestandardową lokalizację. Jednocześnie płyty micro-DTX są podobne do microATX pod względem elementów złącznych i mogą być używane w przypadku odpowiedniego współczynnika kształtu (z wyjątkiem tego, że do prawidłowej instalacji karty graficznej może być wymagane dodatkowe wyposażenie). Standardowy rozmiar takiej płyty to 170 x 170 mm, zbliżony do mini-ITX.

- mini-DTX. Format pośredni między microDTX opisanym powyżej a oryginalnym DTX; czasami opisywany również jako rozszerzona wersja mini-ITX. Ma standardowe wymiary 170 x 203 mm i może być wyposażony w dwa gniazda rozszerzeń (mini-ITX i mini-DTX mają jedno takie gniazdo); jest zupełnie podobny - przeznaczony głównie do kompaktowych obudów, w szczególności komputerów typu HTPC.

- XL-ATX. Większa wersja formatu ATX. Chociaż nie jest to jeszcze ogólnie przyjęty standard, opcje rozmiarów obejmują w szczególności 32,5 x 24,4 cm z 8 gniazdami rozszerzeń i 34,3 x 26,2 cm z maksymalnie 9 dodatkowymi gniazdami.

- Cienki mini-ITX. „Cienka” odmiana mniejszego formatu mini-ITX opisanego powyżej: zgodnie z oficjalną specyfikacją, całkowita grubość cienkiej płyty mini-ITX nie powinna przekraczać 25 mm. Zaprojektowany również dla najmniejszych komputerów - w szczególności HTPC.

- E-ATX. Litera E w nazwie tego formatu oznacza „Extended” - rozszerzony. Jak sama nazwa wskazuje, E-ATX to kolejna powiększona wersja ATX, wykorzystująca płyty o wymiarach 30,5x33 cm.

- EEB. Pełna nazwa SSI EEB. Format stosowany w systemach serwerowych (patrz „Przeznaczenie”) przewiduje rozmiar płyty 30,5 x 33 cm.

- CEB. Pełna nazwa to SSI CEB. Inna forma płyt głównych serwerowych. W rzeczywistości jest to węższa wersja opisanego powyżej EEB, o szerokości zmniejszonej do 25,9 cm (przy tej samej wysokości 30,5 cm).

- flex-ATX. Jedna z kompaktowych wersji ATX zapewniająca wymiary płyty nie większe niż 229x191 mm i nie więcej niż 3 gniazda rozszerzeń. Jednocześnie standard ten jest identyczny z microATX pod względem położenia otworów montażowych; w rzeczywistości został opracowany jako potencjalny zamiennik dla tego drugiego, jednak z wielu powodów nie zdobył dużej popularności, chociaż nadal jest produkowany.

- Niestandardowy (Custom). Nazywany również Proprietary. Płyty główne, które nie są zgodne ze standardowymi formatami i są przeznaczone do specjalnych rozmiarów obudowy (zwykle firmowe).

Wymiary (WxS)

Wymiary płyty głównej na wysokość i szerokość. Zakłada się, że tradycyjne rozmieszczenie płyt głównych jest pionowe, dlatego w tym przypadku jeden z wymiarów nazywa się nie długością, jednak wysokością.

Rozmiary płyt głównych zależą w dużej mierze od ich współczynników kształtu (patrz wyżej), jednak rozmiar konkretnej płyty może nieco różnić się od standardu przyjętego dla tego współczynnika kształtu. Ponadto zwykle łatwiej jest wyjaśnić wymiary zgodnie z charakterystyką konkretnej płyty głównej niż szukać lub przywoływać ogólne informacje na temat współczynnika kształtu. Dlatego dane dotyczące rozmiaru są podawane nawet dla modeli, które są w pełni zgodne ze standardem.

Trzeci wymiar – grubość – jest z wielu powodów uważany za mniej ważny, dlatego często jest pomijany.

Maksymalna częstotliwość taktowania

Maksymalna częstotliwość taktowania pamięci RAM obsługiwana przez płytę główną. Rzeczywista częstotliwość taktowania zainstalowanych modułów pamięci RAM nie powinna przekraczać tego wskaźnika - w przeciwnym razie możliwe są awarie, a możliwości pamięci RAM nie będą mogły być w pełni wykorzystane.

W przypadku nowoczesnych komputerów PC częstotliwość pamięci RAM 1500 - 2000 MHz lub mniej jest uważana za bardzo niską, 2000 - 2500 MHz jest skromna, 2500 - 3000 MHz jest średnia, 3000 - 3500 MHz jest powyżej średniej, a w najbardziej zaawansowanych płytach obsługiwane mogą być 3500 - 4000 MHz, a nawet ponad 4000 MHz.

Złącze M.2

Liczba złączy M.2 przewidzianych w konstrukcji płyty głównej. Istnieją płyty główne na 1 złącze M.2, na 2 złącza, 3 złącza lub więcej.

Złącze M.2 jest przeznaczone do podłączenia zaawansowanych urządzeń wewnętrznych w miniaturowym formacie — w szczególności szybkich dysków SSD, a także kart rozszerzeń, takich jak moduły Wi-Fi i Bluetooth. Jednak złącza zaprojektowane do podłączenia tylko urządzeń peryferyjnych (Key E) nie są zaliczane do liczby. Obecnie jest to jeden z najnowocześniejszych i najbardziej zaawansowanych sposobów podłączenia podzespołów. Warto jednak wziąć pod uwagę, że przez to złącze można podłączać różne interfejsy - SATA lub PCI-E, i nie koniecznie oba na raz. Aby uzyskać szczegółowe informacje, zobacz „Interfejs M.2”; tutaj należy dodać, że SATA ma niską prędkość i jest używany głównie do budżetowych dysków, podczas gdy PCI-E jest używany do zaawansowanych modułów półprzewodnikowych i nadaje się również do innych typów wewnętrznych urządzeń peryferyjnych.

W związku z tym liczba M.2 to liczba podzespołów tego formatu, które można jednocześnie podłączyć do płyty głównej. Jednocześnie wiele współczesnych płyt głównych, szczególnie tych ze średniej i wyższej półki, wyposażonych jest w dwa lub więcej złączy M.2 z obsługą PCI-E.

Interfejs M.2

Interfejsy elektryczne (logiczne) realizowane poprzez fizyczne złącza M.2 na płycie głównej.

Więcej informacji na temat takich złączy można znaleźć powyżej. Tutaj należy pamiętać, że mogą współpracować z dwoma typami interfejsów:
  • SATA to standard pierwotnie stworzony dla dysków twardych. Zazwyczaj M.2 obsługuje najnowszą wersję, SATA 3; jednak nawet ona znacznie ustępuje PCI-E pod względem szybkości (600 MB/s) i funkcjonalności (tylko dyski);
  • PCI-E (Inaczej NVMe) to najpopularniejszy nowoczesny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Nadaje się do różnych kart rozszerzeń (takich jak karty bezprzewodowe) i pamięci masowej, a prędkości PCI-E pozwalają w pełni wykorzystać potencjał nowoczesnych dysków SSD. Maksymalna prędkość transmisji danych zależy od wersji tego interfejsu i liczby linii. W nowoczesnych złączach M.2 można znaleźć wersje PCI-E 3.0 i 4.0, o prędkościach odpowiednio około 1 GB/s i 2 GB/s na linię; a liczba linii może wynosić 1, 2 lub 4 (odpowiednio PCI-E 1x, 2x i 4x)
Konkretnie sam interfejs M.2 w charakterystyce płyt głównych jest wskazywany przez liczbę samych złączy i typ interfejsów przewidzianych w każdej z nich. Na przykład notacja „3xSATA / PCI-E 4x” oznacza trzy złącza, które mogą pracować zarówno w formatach SATA, jak i PCI-E 4x; a oznaczenie „1xSATA / PCI-E 4x, 1xPCI-E 2x” oznacza dwa złącza, z których jedno działa jako SATA lub PCI-E 4x, a drugie tylko jako PCI-E 2x.

Liczba gniazd PCI-E 1x

Liczba gniazd PCI-E (PCI-Express) 1x zainstalowanych na płycie głównej. Dostępne są płyty główne z 1 slotem PCI-E 1x, 2 slotami PCI-E 1x, 3 portami PCI-E 1x i jeszcze więcej.

Magistrala PCI Express służy do łączenia różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Liczba w tytule wskazuje na liczbę torów PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. W związku z tym PCI-E 1x jest podstawową, najwolniejszą wersją tego interfejsu. Szybkość przesyłania danych dla takich gniazd zależy od wersji PCI-E (patrz „Obsługa PCI Express”): w szczególności jest to nieco mniej niż 1 GB/s dla wersji 3.0 i nieco mniej niż 2 GB/s dla 4.0.

Osobno podkreślamy, że ogólna zasada dla PCI-E jest następująca: płyta musi być podłączona do gniazda o tej samej lub większej liczbie linii. Dzięki temu tylko karty na jednej linii będą kompatybilne z PCI-E 1x.

Liczba złączy PCI

Liczba złączy PCI, przewidziana w konstrukcji płyty głównej.

Takie złącza są używane do płyt rozszerzeń. Jednocześnie ten interfejs jest technicznie przestarzały - w szczególności jest zauważalnie gorszy od nowszego PCI-E pod względem prędkości przesyłania danych (do 533 MB/s). Niemniej jednak w przypadku niektórych typów podzespołów (na przykład kart dźwiękowych) takie możliwości są wystarczające; a użycie PCI pozwala na pozostawienie wolnych złączy PCI-E, które mogą być potrzebne dla bardziej wymagających urządzeń peryferyjnych. Dlatego nawet dziś w sprzedaży można znaleźć płyty główne ze złączami PCI oraz podzespoły z takim podłączeniem.

USB 2.0

Liczba złączy USB 2.0 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej, znajdujących się na przednim panelu obudowy. Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się na przednim panelu, które jest w stanie obsłużyć.

W szczególności USB 2.0 jest najstarszą, szeroko używaną wersją. Zapewnia prędkość transmisji danych do 480 Mb/s, jest uważana za przestarzałą i jest stopniowo zastępowana przez bardziej zaawansowane standardy, przede wszystkim USB 3.2 gen1 (dawniej USB 3.0). Niemniej jednak wiele urządzeń peryferyjnych jest nadal produkowanych pod złącze USB 2.0: możliwości tego interfejsu w zupełności wystarczą dla większości urządzeń, które nie wymagają dużych prędkości połączenia.

USB 3.2 gen1

Liczba złączy USB 3.2 gen1 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej umieszczonych na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się w obudowie, które jest w stanie obsłużyć. Przy tym należy pamiętać, że w tym przypadku mówimy o tradycyjnych złączach USB A; złącza dla nowszych USB-C są omawiane są w charakterystykach osobno.

Co się tyczy konkretnie wersji USB 3.2 gen1 (wcześniej znany jako USB 3.1 gen1 i USB 3.0), to ona zapewnia prędkość transmisji danych do 4,8 Gb/s i wyższą moc zasilania niż wcześniejszy standard USB 2.0. Jednocześnie technologia USB Power Delivery, umożliwiająca osiągnięcie mocy do 100 W, zwykle nie jest obsługiwana przez złącza tej wersji dla USB A (choć można ją zaimplementować w złączach na USB-C).
Dynamika cen
ASRock Z370M Pro4 często porównują
ASRock Z370 Pro4 często porównują