Tryb nocny
Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie Gigabyte Z370M DS3H rev. 1.0 vs ASRock Z370M Pro4

Dodaj do porównania
Gigabyte Z370M DS3H rev. 1.0
ASRock Z370M Pro4
Gigabyte Z370M DS3H rev. 1.0ASRock Z370M Pro4
od 356 zł
Produkt jest niedostępny
od 400 zł
Produkt jest niedostępny
TOP sprzedawcy
Przeznaczeniedo gier (overclocking)do gier (overclocking)
SocketIntel LGA 1151 v2Intel LGA 1151 v2
Formatmicro-ATXmicro-ATX
Fazy zasilania610
Radiator VRM
Podświetlenie LED
Wymiary (WxS)226x193 mm244x244 mm
Chipset
ChipsetIntel Z370Intel Z370
BIOSAmiAmi
Obsługa DualBIOS
UEFI BIOS
Pamięć RAM
DDR44 banki(ów)4 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania3866 MHz4300 MHz
Maks. wielkość pamięci64 GB64 GB
Obsługa XMP
Interfejsy dyskowe
SATA 3 (6 Gb/s)6 szt.6 szt.
Złącze M.21 szt.2 szt.
Interfejs M.21xSATA/PCI-E 4x1xSATA/PCI-E 4x, 1xPCI-E 4x
Zintegrowany kontroler RAID
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x2 szt.2 szt.
Liczba gniazd PCI-E 16x1 szt.2 szt.
Tryby PCI-E16x/4x
Obsługa PCI Express3.03.0
Obsługa CrossFire (AMD)
Złącza na płycie głównej
USB 2.02 szt.2 szt.
USB 3.2 gen11 szt.2 szt.
Wyjścia wideo
Wyjście D-Sub (VGA)
Wyjście DVIDVI-DDVI-D
Wyjście HDMI
Zintegrowany układ audio
Układ audioRealtek ALC887Realtek ALC892
Dźwięk (liczba kanałów)7.17.1
Interfejsy sieciowe
LAN (RJ-45)1 Gb/s1 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANRealtek GbEIntel I219V
Złącza na tylnym panelu
USB 2.02 szt.1 szt.
USB 3.2 gen14 szt.4 szt.
USB C 3.2 gen11 szt.
PS/21 szt.2 szt.
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin8 pin
Liczba złączy wentylatorów CPU2 szt.4 szt.
Data dodania do E-Katalogkwiecień 2018październik 2017

Fazy zasilania

Liczba faz zasilania procesora przewidzianych na płycie głównej.

W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.

Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.

Podświetlenie LED

Obecność na płycie głównej własnego podświetlenia LED. Funkcja ta nie wpływa na funkcjonalność płyty głównej, ale nadaje jej niecodzienny wygląd. Dlatego nie ma sensu, aby zwykły użytkownik specjalnie szukał takiego modelu (potrzebuje płyty głównej bez podświetlenia), ale dla miłośników modowania podświetlenie może być bardzo przydatne.

Podświetlenie LED może mieć postać osobnych świateł lub pasków LED, wykonane w różnych kolorach (czasem z możliwością wyboru kolorów) i obsługiwać dodatkowe efekty - mruganie, migotanie, synchronizację z innymi komponentami (patrz „Synchronizacja podświetlenia”) itp. Specyficzne możliwości zależą od modelu płyty głównej.

Wymiary (WxS)

Wymiary płyty głównej na wysokość i szerokość. Zakłada się, że tradycyjne rozmieszczenie płyt głównych jest pionowe, dlatego w tym przypadku jeden z wymiarów nazywa się nie długością, jednak wysokością.

Rozmiary płyt głównych zależą w dużej mierze od ich współczynników kształtu (patrz wyżej), jednak rozmiar konkretnej płyty może nieco różnić się od standardu przyjętego dla tego współczynnika kształtu. Ponadto zwykle łatwiej jest wyjaśnić wymiary zgodnie z charakterystyką konkretnej płyty głównej niż szukać lub przywoływać ogólne informacje na temat współczynnika kształtu. Dlatego dane dotyczące rozmiaru są podawane nawet dla modeli, które są w pełni zgodne ze standardem.

Trzeci wymiar – grubość – jest z wielu powodów uważany za mniej ważny, dlatego często jest pomijany.

Obsługa DualBIOS

Obsługa przez płytę główną technologii DualBIOS.

Awarie i błędy w BIOS-ie (patrz BIOS) to jedne z najpoważniejszych problemów, jakie mogą pojawić się na współczesnym komputerze - nie tylko sprawiają, że komputer jest nieefektywny, ale także są bardzo trudne do naprawienia. Technologia DualBIOS została zaprojektowana, aby ułatwić walkę z tego rodzaju problemami. Płyty główne wykonane przy użyciu tej technologii mają dwa mikroukłady do nagrywania BIOS-u: pierwszy mikroukład zawiera główną wersję BIOS-u, która jest używana do uruchamiania systemu w trybie normalnym, drugi zawiera kopię zapasową BIOS-u w oryginalnej (fabrycznej) konfiguracji. Mikroukład zapasowy zaczyna działać po wykryciu błędu w głównym systemie BIOS: w przypadku wykrycia błędu w kodzie programu przywracany jest do oryginalnej wersji fabrycznej, ale w przypadku awarii sprzętowej mikroukład zapasowy przejmuje kontrolę nad system, zastępując główny. Pozwala to na utrzymanie systemu w stanie gotowości nawet w przypadku poważnych problemów z BIOS-em bez konieczności uciekania się do skomplikowanych procedur przywracania.

Maksymalna częstotliwość taktowania

Maksymalna częstotliwość taktowania pamięci RAM obsługiwana przez płytę główną. Rzeczywista częstotliwość taktowania zainstalowanych modułów pamięci RAM nie powinna przekraczać tego wskaźnika - w przeciwnym razie możliwe są awarie, a możliwości pamięci RAM nie będą mogły być w pełni wykorzystane.

W przypadku nowoczesnych komputerów PC częstotliwość pamięci RAM 1500 - 2000 MHz lub mniej jest uważana za bardzo niską, 2000 - 2500 MHz jest skromna, 2500 - 3000 MHz jest średnia, 3000 - 3500 MHz jest powyżej średniej, a w najbardziej zaawansowanych płytach obsługiwane mogą być 3500 - 4000 MHz, a nawet ponad 4000 MHz.

Złącze M.2

Liczba złączy M.2 przewidzianych w konstrukcji płyty głównej. Istnieją płyty główne na 1 złącze M.2, na 2 złącza, 3 złącza lub więcej.

Złącze M.2 jest przeznaczone do podłączenia zaawansowanych urządzeń wewnętrznych w miniaturowym formacie — w szczególności szybkich dysków SSD, a także kart rozszerzeń, takich jak moduły Wi-Fi i Bluetooth. Jednak złącza zaprojektowane do podłączenia tylko urządzeń peryferyjnych (Key E) nie są zaliczane do liczby. Obecnie jest to jeden z najnowocześniejszych i najbardziej zaawansowanych sposobów podłączenia podzespołów. Warto jednak wziąć pod uwagę, że przez to złącze można podłączać różne interfejsy - SATA lub PCI-E, i nie koniecznie oba na raz. Aby uzyskać szczegółowe informacje, zobacz „Interfejs M.2”; tutaj należy dodać, że SATA ma niską prędkość i jest używany głównie do budżetowych dysków, podczas gdy PCI-E jest używany do zaawansowanych modułów półprzewodnikowych i nadaje się również do innych typów wewnętrznych urządzeń peryferyjnych.

W związku z tym liczba M.2 to liczba podzespołów tego formatu, które można jednocześnie podłączyć do płyty głównej. Jednocześnie wiele współczesnych płyt głównych, szczególnie tych ze średniej i wyższej półki, wyposażonych jest w dwa lub więcej złączy M.2 z obsługą PCI-E.

Interfejs M.2

Interfejsy elektryczne (logiczne) realizowane poprzez fizyczne złącza M.2 na płycie głównej.

Więcej informacji na temat takich złączy można znaleźć powyżej. Tutaj należy pamiętać, że mogą współpracować z dwoma typami interfejsów:
  • SATA to standard pierwotnie stworzony dla dysków twardych. Zazwyczaj M.2 obsługuje najnowszą wersję, SATA 3; jednak nawet ona znacznie ustępuje PCI-E pod względem szybkości (600 MB/s) i funkcjonalności (tylko dyski);
  • PCI-E (Inaczej NVMe) to najpopularniejszy nowoczesny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Nadaje się do różnych kart rozszerzeń (takich jak karty bezprzewodowe) i pamięci masowej, a prędkości PCI-E pozwalają w pełni wykorzystać potencjał nowoczesnych dysków SSD. Maksymalna prędkość transmisji danych zależy od wersji tego interfejsu i liczby linii. W nowoczesnych złączach M.2 można znaleźć wersje PCI-E 3.0 i 4.0, o prędkościach odpowiednio około 1 GB/s i 2 GB/s na linię; a liczba linii może wynosić 1, 2 lub 4 (odpowiednio PCI-E 1x, 2x i 4x)
Konkretnie sam interfejs M.2 w charakterystyce płyt głównych jest wskazywany przez liczbę samych złączy i typ interfejsów przewidzianych w każdej z nich. Na przykład notacja „3xSATA / PCI-E 4x” oznacza trzy złącza, które mogą pracować zarówno w formatach SATA, jak i PCI-E 4x; a oznaczenie „1xSATA / PCI-E 4x, 1xPCI-E 2x” oznacza dwa złącza, z których jedno działa jako SATA lub PCI-E 4x, a drugie tylko jako PCI-E 2x.

Liczba gniazd PCI-E 16x

Liczba gniazd PCI-E (PCI-Express) 16x znajdujących się na płycie głównej.

Magistrala PCI Express służy do podłączania różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Cyfra w nazwie oznacza liczbę linii PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. 16 linii to największa liczba występująca w nowoczesnych gniazdach i płytach PCI Express (możliwości techniczne dla większej liczby istnieją, jednak złącza byłyby zbyt nieporęczne). W związku z tym te gniazda są najszybsze: ich prędkość transmisji danych wynosi 16 GB/s dla wersji PCI-E 3.0 i 32 GB/s dla wersji 4.0 (więcej informacji na temat wersji można znaleźć w sekcji „Obsługa PCI Express”).

Osobno należy pamiętać, że to PCI-E 16x jest uważane za optymalne złącze do podłączania kart graficznych. Wybierając jednak płytę główną z kilkoma takimi gniazdami, warto zastanowić się nad obsługiwanymi przez nią trybami PCI-E (patrz niżej). Ponadto pamiętaj, że interfejs PCI Express umożliwia podłączenie kart z mniejszą liczbą linii do złączy z większą liczbą linii. W ten sposób PCI-E 16x będzie pasować do każdej karty PCI Express.

Warto też wspomnieć, że nowoczesne płyty główne mają ponadgabarytowe gniazda - w szczególności PCI-E 4x, odpowiadające rozmiarem PCI-E 16x. Jednak rodzaj gniazd PCI-E w naszym katalogu określa się na podstawie rzeczywistej przepustowości; więc pod PCI-E...16x kryją się tylko gniazda obsługujące prędkość na poziomie 16x.

Tryby PCI-E

Tryby pracy slotów PCI-E 16x obsługiwane przez płytę główną.

Aby uzyskać więcej informacji na temat tego interfejsu, patrz wyżej, a dane dotyczące trybów określa się w przypadku, jeśli na płycie jest kilka gniazd PCI-E 16x. Dane te określają, z jaką prędkością te gniazda mogą pracować przy jednoczesnym podłączaniu do nich kart rozszerzeń, ile linii może używać każdy z nich. Faktem jest, że całkowita liczba linii PCI-Express na każdej płycie głównej jest ograniczona i zwykle nie wystarczają one do jednoczesnej pracy wszystkich 16-kanałowych gniazd z pełną mocą. W związku z tym, podczas jednoczesnej pracy, prędkość nieuchronnie musi zostać ograniczona: na przykład zapis 16x / 4x / 4x oznacza, że płyta główna ma trzy 16-kanałowe gniazda, ale jeśli trzy karty graficzne są do nich podłączone jednocześnie, to drugie i trzecie gniazdo będą w stanie zapewnić prędkość tylko na poziomie PCI-E 4x. W związku z tym dla innej liczby slotów i liczby cyfr będą odpowiednie. Istnieją również karty z kilkoma trybami - na przykład 16x / 0x / 4 i 8x / 8x / 4x (0x oznacza, że slot w ogóle przestaje działać).

Należy zwrócić uwagę na parametr ten głównie podczas instalowania kilku kart graficznych jednocześnie: w niektórych przypadkach (na przykład podczas korzystania z technologii SLI), aby karty graficzne działały poprawnie, muszą być podłączone do gniazd z tą samą prędkością.
Gigabyte Z370M DS3H rev. 1.0 często porównują
ASRock Z370M Pro4 często porównują