Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie ASRock B250M Pro4 vs MSI B250M BAZOOKA

Dodaj do porównania
ASRock B250M Pro4
MSI B250M BAZOOKA
ASRock B250M Pro4MSI B250M BAZOOKA
od 288 zł
Produkt jest niedostępny
od 270 zł
Produkt jest niedostępny
TOP sprzedawcy
Główne
Wsparcie dla pamięci DDR4-2400. Dwa gniazda M. 2. Gniazdo USB Type-C.
Przeznaczeniegamingowagamingowa
SocketIntel LGA 1151Intel LGA 1151
Formatmicro-ATXmicro-ATX
Fazy zasilania6
Radiator VRM
Podświetlenie LED
Synchronizacja podświetleniaMSI Mystic Light Sync
Wymiary (WxS)244x244 mm244x228 mm
Chipset
ChipsetIntel B250Intel B250
BIOSAmiAmi
UEFI BIOS
Pamięć RAM
DDR44 banki(ów)4 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania2400 MHz2400 MHz
Maks. wielkość pamięci64 GB64 GB
Obsługa XMP
Interfejsy dyskowe
SATA 3 (6 Gb/s)6 szt.6 szt.
Złącze M.22 szt.1 szt.
Interfejs M.21xSATA/PCI-E 4x, 1xPCI-E 4x1xSATA/PCI-E 4x
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x1 szt.2 szt.
Liczba gniazd PCI-E 16x2 szt.1 szt.
Tryby PCI-E16x/4x
Obsługa PCI Express3.03.0
Liczba złączy PCI1 szt.
Obsługa CrossFire (AMD)
Złącza na płycie głównej
USB 2.02 szt.2 szt.
USB 3.2 gen11 szt.1 szt.
Wyjścia wideo
Wyjście D-Sub (VGA)
Wyjście DVIDVI-DDVI-D
Wyjście HDMI
Zintegrowany układ audio
Układ audioRealtek ALC892Realtek ALC887
Dźwięk (liczba kanałów)7.17.1
Interfejsy sieciowe
LAN (RJ-45)1 Gb/s1 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANIntel I219VRealtek 8111H
Złącza na tylnym panelu
USB 2.02 szt.2 szt.
USB 3.2 gen13 szt.3 szt.
USB C 3.2 gen11 szt.1 szt.
PS/22 szt.2 szt.
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin8 pin
Liczba złączy wentylatorów CPU4 szt.3 szt.
Data dodania do E-Katalogstyczeń 2017styczeń 2017

Fazy zasilania

Liczba faz zasilania procesora przewidzianych na płycie głównej.

W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.

Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.

Radiator VRM

Obecność na płycie głównej osobnego radiatora do VRM.

VRM to moduł regulacji napięcia, który dostarcza energię z zasilacza komputera do procesora. Moduł ten obniża standardowe napięcie zasilacza (+5 lub +12 V) do niższej wartości niezbędnej do pracy procesora (zwykle nieco ponad 1 V). Przy dużych obciążeniach regulator napięcia może się bardzo nagrzać, a bez specjalistycznego układu chłodzenia może dojść do przegrzania, a nawet spalenia się części. Radiator VRM zmniejsza prawdopodobieństwo takich sytuacji; może być przydatny dla każdego procesora i jest wysoce pożądany, jeśli płyta ma być używana z wydajnym procesorem high-end (zwłaszcza podkręconym).

Podświetlenie LED

Obecność na płycie głównej własnego podświetlenia LED. Funkcja ta nie wpływa na funkcjonalność płyty głównej, ale nadaje jej niecodzienny wygląd. Dlatego nie ma sensu, aby zwykły użytkownik specjalnie szukał takiego modelu (potrzebuje płyty głównej bez podświetlenia), ale dla miłośników modowania podświetlenie może być bardzo przydatne.

Podświetlenie LED może mieć postać osobnych świateł lub pasków LED, wykonane w różnych kolorach (czasem z możliwością wyboru kolorów) i obsługiwać dodatkowe efekty - mruganie, migotanie, synchronizację z innymi komponentami (patrz „Synchronizacja podświetlenia”) itp. Specyficzne możliwości zależą od modelu płyty głównej.

Synchronizacja podświetlenia

Technologia synchronizacji przewidziana na płycie z podświetleniem LED (patrz wyżej).

Sama synchronizacja pozwala „dopasować” podświetlenie płyty głównej do podświetlenia innych elementów systemu - obudowy, karty graficznej, klawiatury, myszy itp. Dzięki tej koordynacji wszystkie elementy mogą synchronicznie zmieniać kolor, jednocześnie się włączać / wyłączać itp. Specyficzne cechy działania takiego podświetlenia zależą od zastosowanej technologii synchronizacji i z reguły każdy producent ma swoje własne (Mystic Light Sync od MSI, RGB Fusion od Gigabyte itp.). Od tego zależy również kompatybilność komponentów: wszystkie muszą obsługiwać tę samą technologię. Najłatwiej więc osiągnąć kompatybilność z podświetleniem, montując komponenty od jednego producenta.

Wymiary (WxS)

Wymiary płyty głównej na wysokość i szerokość. Zakłada się, że tradycyjne rozmieszczenie płyt głównych jest pionowe, dlatego w tym przypadku jeden z wymiarów nazywa się nie długością, jednak wysokością.

Rozmiary płyt głównych zależą w dużej mierze od ich współczynników kształtu (patrz wyżej), jednak rozmiar konkretnej płyty może nieco różnić się od standardu przyjętego dla tego współczynnika kształtu. Ponadto zwykle łatwiej jest wyjaśnić wymiary zgodnie z charakterystyką konkretnej płyty głównej niż szukać lub przywoływać ogólne informacje na temat współczynnika kształtu. Dlatego dane dotyczące rozmiaru są podawane nawet dla modeli, które są w pełni zgodne ze standardem.

Trzeci wymiar – grubość – jest z wielu powodów uważany za mniej ważny, dlatego często jest pomijany.

Złącze M.2

Liczba złączy M.2 przewidzianych w konstrukcji płyty głównej. Istnieją płyty główne na 1 złącze M.2, na 2 złącza, 3 złącza lub więcej.

Złącze M.2 jest przeznaczone do podłączenia zaawansowanych urządzeń wewnętrznych w miniaturowym formacie — w szczególności szybkich dysków SSD, a także kart rozszerzeń, takich jak moduły Wi-Fi i Bluetooth. Jednak złącza zaprojektowane do podłączenia tylko urządzeń peryferyjnych (Key E) nie są zaliczane do liczby. Obecnie jest to jeden z najnowocześniejszych i najbardziej zaawansowanych sposobów podłączenia podzespołów. Warto jednak wziąć pod uwagę, że przez to złącze można podłączać różne interfejsy - SATA lub PCI-E, i nie koniecznie oba na raz. Aby uzyskać szczegółowe informacje, zobacz „Interfejs M.2”; tutaj należy dodać, że SATA ma niską prędkość i jest używany głównie do budżetowych dysków, podczas gdy PCI-E jest używany do zaawansowanych modułów półprzewodnikowych i nadaje się również do innych typów wewnętrznych urządzeń peryferyjnych.

W związku z tym liczba M.2 to liczba podzespołów tego formatu, które można jednocześnie podłączyć do płyty głównej. Jednocześnie wiele współczesnych płyt głównych, szczególnie tych ze średniej i wyższej półki, wyposażonych jest w dwa lub więcej złączy M.2 z obsługą PCI-E.

Interfejs M.2

Interfejsy elektryczne (logiczne) realizowane poprzez fizyczne złącza M.2 na płycie głównej.

Więcej informacji na temat takich złączy można znaleźć powyżej. Tutaj należy pamiętać, że mogą współpracować z dwoma typami interfejsów:
  • SATA to standard pierwotnie stworzony dla dysków twardych. Zazwyczaj M.2 obsługuje najnowszą wersję, SATA 3; jednak nawet ona znacznie ustępuje PCI-E pod względem szybkości (600 MB/s) i funkcjonalności (tylko dyski);
  • PCI-E (Inaczej NVMe) to najpopularniejszy nowoczesny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Nadaje się do różnych kart rozszerzeń (takich jak karty bezprzewodowe) i pamięci masowej, a prędkości PCI-E pozwalają w pełni wykorzystać potencjał nowoczesnych dysków SSD. Maksymalna prędkość transmisji danych zależy od wersji tego interfejsu i liczby linii. W nowoczesnych złączach M.2 można znaleźć wersje PCI-E 3.0 i 4.0, o prędkościach odpowiednio około 1 GB/s i 2 GB/s na linię; a liczba linii może wynosić 1, 2 lub 4 (odpowiednio PCI-E 1x, 2x i 4x)
Konkretnie sam interfejs M.2 w charakterystyce płyt głównych jest wskazywany przez liczbę samych złączy i typ interfejsów przewidzianych w każdej z nich. Na przykład notacja „3xSATA / PCI-E 4x” oznacza trzy złącza, które mogą pracować zarówno w formatach SATA, jak i PCI-E 4x; a oznaczenie „1xSATA / PCI-E 4x, 1xPCI-E 2x” oznacza dwa złącza, z których jedno działa jako SATA lub PCI-E 4x, a drugie tylko jako PCI-E 2x.

Liczba gniazd PCI-E 1x

Liczba gniazd PCI-E (PCI-Express) 1x zainstalowanych na płycie głównej. Dostępne są płyty główne z 1 slotem PCI-E 1x, 2 slotami PCI-E 1x, 3 portami PCI-E 1x i jeszcze więcej.

Magistrala PCI Express służy do łączenia różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Liczba w tytule wskazuje na liczbę torów PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. W związku z tym PCI-E 1x jest podstawową, najwolniejszą wersją tego interfejsu. Szybkość przesyłania danych dla takich gniazd zależy od wersji PCI-E (patrz „Obsługa PCI Express”): w szczególności jest to nieco mniej niż 1 GB/s dla wersji 3.0 i nieco mniej niż 2 GB/s dla 4.0.

Osobno podkreślamy, że ogólna zasada dla PCI-E jest następująca: płyta musi być podłączona do gniazda o tej samej lub większej liczbie linii. Dzięki temu tylko karty na jednej linii będą kompatybilne z PCI-E 1x.

Liczba gniazd PCI-E 16x

Liczba gniazd PCI-E (PCI-Express) 16x znajdujących się na płycie głównej.

Magistrala PCI Express służy do podłączania różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Cyfra w nazwie oznacza liczbę linii PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. 16 linii to największa liczba występująca w nowoczesnych gniazdach i płytach PCI Express (możliwości techniczne dla większej liczby istnieją, jednak złącza byłyby zbyt nieporęczne). W związku z tym te gniazda są najszybsze: ich prędkość transmisji danych wynosi 16 GB/s dla wersji PCI-E 3.0 i 32 GB/s dla wersji 4.0 (więcej informacji na temat wersji można znaleźć w sekcji „Obsługa PCI Express”).

Osobno należy pamiętać, że to PCI-E 16x jest uważane za optymalne złącze do podłączania kart graficznych. Wybierając jednak płytę główną z kilkoma takimi gniazdami, warto zastanowić się nad obsługiwanymi przez nią trybami PCI-E (patrz niżej). Ponadto pamiętaj, że interfejs PCI Express umożliwia podłączenie kart z mniejszą liczbą linii do złączy z większą liczbą linii. W ten sposób PCI-E 16x będzie pasować do każdej karty PCI Express.

Warto też wspomnieć, że nowoczesne płyty główne mają ponadgabarytowe gniazda - w szczególności PCI-E 4x, odpowiadające rozmiarem PCI-E 16x. Jednak rodzaj gniazd PCI-E w naszym katalogu określa się na podstawie rzeczywistej przepustowości; więc pod PCI-E...16x kryją się tylko gniazda obsługujące prędkość na poziomie 16x.
ASRock B250M Pro4 często porównują