Polska
Katalog   /   Komputery   /   Podzespoły   /   Procesory

Porównanie Intel Core i5 Coffee Lake i5-8400 OEM vs Intel Core i5 Kaby Lake-X i5-7640X BOX

Dodaj do porównania
Intel Core i5 Coffee Lake i5-8400 OEM
Intel Core i5 Kaby Lake-X i5-7640X BOX
Intel Core i5 Coffee Lake i5-8400 OEMIntel Core i5 Kaby Lake-X i5-7640X BOX
od 1 115 zł
Produkt jest niedostępny
od 1 502 zł
Produkt jest niedostępny
TOP sprzedawcy
SeriaCore i5Core i5
Nazwa kodowaCoffee LakeKaby Lake-X
Złącze (Socket)Intel LGA 1151 v2Intel LGA 2066
Proces technologiczny14 nm14 nm
Wersja opakowaniaOEM (bez pudełka)BOX (bez wentylatora)
Rdzenie i wątki
Liczba rdzeni6 cores4 cores
Liczba wątków6 threads4 threads
Częstotliwość
Częstotliwość taktowania2.8 GHz4 GHz
Częstotliwość TurboBoost / TurboCore4 GHz4.2 GHz
Pojemność pamięci podręcznej
Pamięć podręczna L1256 KB
Pamięć podręczna L21024 KB
Pamięć podręczna L39 MB6 MB
Specyfikacja
Model zintegrowanego układu graficznegoUHD Graphics 630brak
Częstotliwość magistrali systemowej8 GT/s8 GT/s
Wydzielanie ciepła (TDP)65 W112 W
Obsługa instrukcji
MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AES, AVX, AVX2 /BMI, BMI1, BMI2, F16C, FMA3, EM64T, NX, XD, VT-x, VT-d, MPX, SGX/
MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AES, AVX, AVX2 /BMI, BMI1, BMI2, F16C, FMA3, EM64T, NX, XD, VT-x, VT-d, TBT 2.0/
Mnożnik2840
Zmienny mnożnik
Obsługa PCI Express3.0
Test PassMark CPU Mark11625 punkty(ów)6467 punkty(ów)
Test Geekbench 422258 punkty(ów)22713 punkty(ów)
Test Cinebench R15924 punkty(ów)697 punkty(ów)
Obsługa pamięci
Maks. obsługiwana pojemność pamięci RAM128 GB64 GB
Maks. częstotliwość DDR42666 MHz2666 MHz
Liczba kanałów2 szt.2 szt.
Data dodania do E-Katalogmaj 2018maj 2017

Nazwa kodowa

Parametr ten charakteryzuje, po pierwsze, proces technologiczny, a po drugie niektóre cechy wewnętrznej budowy procesorów. Nowa nazwa kodowa jest wprowadzana na rynek z każdą nową generacją procesorów; chipy tej samej architekturze są „rówieśnikami”, lecz mogą należeć do różnych serii (patrz wyżej). W takim przypadku jedna generacja może zawierać jedną lub kilka nazw kodowych.

Oto najpopularniejsze obecnie nazwy kodowe Intela: Cascade Lake-X (10. generacja), Comet Lake (10. generacja), Comet Lake Refresh (10. generacja), Rocket Lake< /a> (11. generacja), Alder Lake (12. generacja), Raptor Lake (13. generacja), Raptor Lake Refresh (14. generacja).

W przypadku AMD są to: Zen+ Picasso, Zen2 Matisse, Zen2 Renoir, Zen3 Vermeer, Zen3 Cezanne, Zen4 Raphael, Zen4 Phoenix oraz Zen5 Granite Ridge.

Złącze (Socket)

Rodzaj złącza (gniazda) do montażu procesora na płycie głównej. W celu zapewnienia normalnej kompatybilności konieczne jest, aby procesor i płyta główna były zgodne z typem gniazda; kwestię tę należy wyjaśnić osobno przed zakupem jednego i drugiego.

W przypadku procesorów Intel, obecnie aktualne są następujące gniazda: 1150, 1155, 1356, 2011, 2011 v3, 2066, 1151, 1151 v2, 3647, 1200, 1700 , 1851.

Procesory AMD z kolei wyposażone są w następujące typy gniazd: AM3/AM3+, FM2/FM2+, AM4, AM5, TR4/TRX4, WRX8.

Wersja opakowania

Parametr ten nie tyle wskazuje różnicę w parametrach technicznych, ile opisuje opakowanie i akcesoria.

-OEM. Pakiet tacy, czyli OEM, zapewnia, że procesor jest dostarczany bez układu chłodzenia (CO) i bez markowego pudełka - opakowanie to zwykle zwykła torba antystatyczna. Musisz osobno wybrać i zainstalować chłodzenie dla takiego procesora, co wiąże się z dodatkowymi problemami; Co więcej, instalując samodzielnie chłodnicę, trudno jest uzyskać z niej taką samą wydajność, jak w przypadku chłodnicy zainstalowanej fabrycznie. Dodatkowo komponenty w opakowaniach tacowych mają zazwyczaj krótszy okres gwarancji niż w opakowaniach pudełkowych oraz posiadają uboższe wyposażenie dodatkowe. Z drugiej strony są zauważalnie tańsze; a brak CO pozwala wybrać go osobno, bez polegania na wyborze producenta.

— BOX (bez chłodnicy). Procesory zapakowane w markowe pudełka, ale nie wyposażone w układy chłodzenia (CO). Takie opakowanie jest droższe niż OEM, ale okres gwarancji na chipy „pudełkowe” jest zwykle znacznie dłuższy (na przykład trzy lata zamiast jednego). Z jednej strony brak chłodnicy wymaga dodatkowych wysiłków w celu znalezienia i zainstalowania chłodziwa; z drugiej strony chłodzenie można dobrać według własnych kryteriów, bez polegania na wyborze producenta. Warto jednak wziąć pod uwagę, że instalując samodzielnie chłodnicę, trudno jest uzyskać z niej taką samą wydajność, jak przy instalacji fabrycznej; Jest to szczególnie istotne, jeśli planowane jest intensywn...e podkręcanie procesora, w przypadku takich trybów lepiej wybrać pakiet pudełkowy z chłodnicą.

— BOX (z chłodnicą). Procesory zapakowane w markowe pudełka i wyposażone w układy chłodzenia (CO). Samo opakowanie pudełkowe jest droższe od OEM, jednak rekompensuje to szereg zalet – w szczególności szersze opakowanie i dłuższy okres gwarancji. Jeśli chodzi o obecność chłodnicy w zestawie, dodatkowo zwiększa to całkowity koszt procesora, ale eliminuje potrzebę zawracania sobie głowy wyborem i instalacją oddzielnego układu chłodzenia. Warto zaznaczyć, że fabryczna instalacja CO pozwala na osiągnięcie wyższej wydajności niż niezależna instalacja, dlatego ta konkretna opcja konfiguracji najlepiej sprawdza się przy dużych obciążeniach (w tym overclockingu). Z drugiej strony przed zakupem należy sprawdzić, czy w obudowie jest wystarczająco dużo miejsca na chłodnicę: kompletne chłodnice mogą być dość nieporęczne, a ich wymontowanie może być trudne.

Liczba rdzeni

Liczba fizycznych rdzeni przewidziana w konstrukcji procesora. Rdzeń to część procesora odpowiedzialna za wykonanie strumienia instrukcji. Obecność kilku rdzeni pozwala procesorowi na jednoczesną pracę z kilkoma zadaniami, co ma pozytywny wpływ na wydajność. Początkowo każdy rdzeń fizyczny miał wykonywać jeden strumień instrukcji, a liczba strumieni odpowiadała liczbie rdzeni. Jednak obecnie istnieje sporo procesorów, które obsługują technologie wielowątkowości i są w stanie wykonywać dwa strumienie instrukcji jednocześnie na każdym rdzeniu. Patrz „Liczba wątków”, aby uzyskać więcej informacji.

W stacjonarnych procesorach 2 rdzenie (2 wątki) z reguły są typowe dla modeli budżetowych. 2 rdzenie (4 wątki) i 4 rdzenie są typowe dla niskobudżetowych modeli ze średniej półki cenowej. 4 rdzenie (8 wątków), 6 rdzeni, 6 rdzeni (12 wątków), 8 rdzeni to średnia półka cenowa. 8 rdzeni (16 wątków), 10 rdzeni, 12 rdzeni, 16 rdzeni i więcej to oznaki zaawansowanych modeli, w tym procesorów do serwerów i stacji roboczych.

Należy wziąć pod uwagę, że o rzeczywistych możliwoś...ciach procesora decyduje nie tylko dany parametr, ale także inne parametry – przede wszystkim seria i generacja/architektura (patrz odpowiednie punkty). Nierzadko zdarza się, że bardziej zaawansowany i/lub nowy dwurdzeniowy procesor jest mocniejszy niż czterordzeniowy układ starszej serii lub architektury. Dlatego sensowne jest porównywanie procesorów według liczby rdzeni w ramach tej samej serii i generacji.

Liczba wątków

Liczba wątków instrukcji, które procesor może wykonywać jednocześnie.

Pierwotnie każdy rdzeń fizyczny (patrz „Liczba rdzeni”) miał wykonywać jeden wątek instrukcji, a liczba wątków odpowiadała liczbie rdzeni. Jednak obecnie istnieje wiele procesorów obsługujących technologie wielowątkowe Hyper-Threading lub SMT (patrz poniżej) i zdolnych do wykonywania dwóch wątków jednocześnie na każdym rdzeniu. W takich modelach liczba wątków jest dwukrotnie większa niż liczba rdzeni - na przykład 8 wątków zostanie określonych w układzie czterordzeniowym.

Ogólnie rzecz biorąc, większa liczba wątków, przy wszystkich innych niezmiennie równych warunkach, ma pozytywny wpływ na szybkość i wydajność, ale zwiększa koszt procesora.

Częstotliwość taktowania

Liczba cykli zegara na sekundę, które procesor wytwarza w normalnym trybie pracy. Taktem nazywany jest oddzielny impuls elektryczny służący do przetwarzania danych i synchronizacji procesora z pozostałymi elementami systemu komputerowego. Różne operacje mogą wymagać zarówno ułamków zegara, jak i kilku cykli zegara, jednak w każdym przypadku częstotliwość taktowania jest jednym z głównych parametrów charakteryzujących wydajność i szybkość procesora - przy pozostałych warunkach równych, procesor o wyższej częstotliwości taktowania będzie działać szybciej i lepiej radzi sobie ze znacznymi obciążeniami. Jednocześnie należy pamiętać, że rzeczywistą wydajność chipa determinuje nie tylko częstotliwość zegara, ale także szereg innych cech - od serii i architektury (patrz odpowiednie punkty) po liczbę rdzeni i wsparcie dla specjalnych instrukcji. Dlatego sensowne jest porównywanie częstotliwości taktowania tylko z chipami o podobnej charakterystyce, należącymi do tej samej serii i generacji.

Częstotliwość TurboBoost / TurboCore

Maksymalna częstotliwość taktowania procesora, jaką można osiągnąć podczas pracy w trybie podkręcania Turbo Boost lub Turbo Core.

Nazwa „Turbo Boost” jest używana dla technologii podkręcania stosowanej przez firmę Intel, „Turbo Core” jest używana dla rozwiązań firmy AMD. Zasada działania w obu przypadkach jest taka sama: jeśli niektóre rdzenie nie są zaangażowane lub pracują pod obciążeniem poniżej maksymalnego, procesor może przenieść część obciążenia z obciążonych rdzeni na nie, zwiększając w ten sposób moc obliczeniową i wydajność. Praca w tym trybie charakteryzuje się wzrostem częstotliwości taktowania i jest to wskazane w tym przypadku.

Należy pamiętać, że mówimy o maksymalnej możliwej częstotliwości taktowania - nowoczesne procesory są w stanie dostosować tryb pracy w zależności od sytuacji, a przy stosunkowo niskim obciążeniu rzeczywista częstotliwość może być niższa niż maksymalna możliwa. Ogólne znaczenie tego parametru można znaleźć w rubryce „Częstotliwość zegara".

Pamięć podręczna L1

Rozmiar pamięci podręcznej poziomu 1 (L1) przewidziana w procesorze.

Pamięć podręczna — pośredni bufor pamięci, w którym podczas pracy procesora zapisywane są najczęściej używane dane z pamięci RAM. Przyspiesza to dostęp do nich i ma pozytywny wpływ na wydajność systemu. Im większa pamięć podręczna, tym więcej danych można w niej przechowywać w celu szybkiego dostępu i wyższej wydajności. Pamięć podręczna poziomu 1 ma najwyższą wydajność i najmniejszy rozmiar - do 128 KB. Jest integralną częścią każdego procesora.

Pamięć podręczna L2

Rozmiar pamięci podręcznej poziomu 2 (L2) przewidziana w procesorze.

Pamięć podręczna — pośredni bufor pamięci, w którym podczas pracy procesora zapisywane są najczęściej używane dane z pamięci RAM. Przyspiesza to dostęp do nich i pozytywnie wpływa na szybkość systemu. Im większa pojemność pamięci podręcznej — tym więcej danych może być w niej przechowywanych w celu szybkiego dostępu i wyższej wydajności. Objętość pamięci podręcznej L2 może wynosić do 12 MB, zdecydowana większość nowoczesnych procesorów ma taką pamięć podręczną.
Intel Core i5 Coffee Lake często porównują