Polska
Katalog   /   Komputery   /   Podzespoły   /   Procesory

Porównanie AMD Ryzen 5 Raven Ridge 2400G BOX vs AMD Ryzen 5 Summit Ridge 1600 BOX 14 nm

Dodaj do porównania
AMD Ryzen 5 Raven Ridge 2400G BOX
AMD Ryzen 5 Summit Ridge 1600 BOX 14 nm
AMD Ryzen 5 Raven Ridge 2400G BOXAMD Ryzen 5 Summit Ridge 1600 BOX 14 nm
Porównaj ceny 1
od 540 zł
Wkrótce w sprzedaży
TOP sprzedawcy
Główne
Osiem strumieni. Kompatybilny ze starszymi chipsetami AM4 po aktualizacji BIOS. Odblokowany mnożnik nawet na rdzeniu wideo.
Dwanaście wątków w stosunkowo przystępnej cenie. Automatyczne podkręcanie i dodatkowe podkręcanie ręczne. W zestawie chłodnica.
SeriaRyzen 5Ryzen 5
Nazwa kodowaRaven Ridge (Zen)Summit Ridge (Zen)
Złącze (Socket)AMD AM4AMD AM4
Proces technologiczny14 nm14 nm
Wersja opakowaniaBOX (z wentylatorem)BOX (z wentylatorem)
Rdzenie i wątki
Liczba rdzeni4 rdzenie6 rdzenie
Liczba wątków8 threads12 threads
Wielowątkowość
Częstotliwość
Częstotliwość taktowania3.6 GHz3.2 GHz
Częstotliwość TurboBoost / TurboCore3.9 GHz3.6 GHz
Pojemność pamięci podręcznej
Pamięć podręczna L1384 KB576 KB
Pamięć podręczna L22048 KB3072 KB
Pamięć podręczna L34 MB16 MB
Specyfikacja
Model zintegrowanego układu graficznegoRadeon Vega 11brak
Wydzielanie ciepła (TDP)65 W65 W
Obsługa instrukcji
MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AES, AVX, AVX2 /BMI, BMI1, BMI2, SHA, F16C, FMA3, AMD64, EVP, AMD-V, SMAP, SMEP/
MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AES, AVX, AVX2 /BMI, BMI1, BMI2, SHA, F16C, FMA3, AMD64, EVP, AMD-V, SMAP, SMEP/
Zmienny mnożnik
Obsługa PCI Express3.03.0
Maks. temperatura robocza105 °C
Test PassMark CPU Mark9285 punkty(ów)12269 punkty(ów)
Test Geekbench 414057 punkty(ów)24095 punkty(ów)
Test Cinebench R15856 punkty(ów)1129 punkty(ów)
Obsługa pamięci
Maks. obsługiwana pojemność pamięci RAM64 GB
Maks. częstotliwość DDR42933 MHz2667 MHz
Liczba kanałów2 szt.2 szt.
Data dodania do E-Katalogluty 2018marzec 2017

Nazwa kodowa

Parametr ten charakteryzuje, po pierwsze, proces technologiczny, a po drugie niektóre cechy wewnętrznej budowy procesorów. Nowa nazwa kodowa jest wprowadzana na rynek z każdą nową generacją procesorów; chipy tej samej architekturze są „rówieśnikami”, lecz mogą należeć do różnych serii (patrz wyżej). W takim przypadku jedna generacja może zawierać jedną lub kilka nazw kodowych.

Oto najpopularniejsze obecnie nazwy kodowe Intela: Cascade Lake-X (10. generacja), Comet Lake (10. generacja), Comet Lake Refresh (10. generacja), Rocket Lake< /a> (11. generacja), Alder Lake (12. generacja), Raptor Lake (13. generacja), Raptor Lake Refresh (14. generacja).

W przypadku AMD są to: Zen+ Picasso, Zen2 Matisse, Zen2 Renoir, Zen3 Vermeer, Zen3 Cezanne, Zen4 Raphael i Zen4 Phoenix.

Liczba rdzeni

Liczba fizycznych rdzeni przewidziana w konstrukcji procesora. Rdzeń to część procesora odpowiedzialna za wykonanie strumienia instrukcji. Obecność kilku rdzeni pozwala procesorowi na jednoczesną pracę z kilkoma zadaniami, co ma pozytywny wpływ na wydajność. Początkowo każdy rdzeń fizyczny miał wykonywać jeden strumień instrukcji, a liczba strumieni odpowiadała liczbie rdzeni. Jednak obecnie istnieje sporo procesorów, które obsługują technologie wielowątkowości i są w stanie wykonywać dwa strumienie instrukcji jednocześnie na każdym rdzeniu. Patrz „Liczba wątków”, aby uzyskać więcej informacji.

W stacjonarnych procesorach 2 rdzenie (2 wątki) z reguły są typowe dla modeli budżetowych. 2 rdzenie (4 wątki) i 4 rdzenie są typowe dla niskobudżetowych modeli ze średniej półki cenowej. 4 rdzenie (8 wątków), 6 rdzeni, 6 rdzeni (12 wątków), 8 rdzeni to średnia półka cenowa. 8 rdzeni (16 wątków), 10 rdzeni, 12 rdzeni, 16 rdzeni i więcej to oznaki zaawansowanych modeli, w tym procesorów do serwerów i stacji roboczych.

Należy wziąć pod uwagę, że o rzeczywistych możliwoś...ciach procesora decyduje nie tylko dany parametr, ale także inne parametry – przede wszystkim seria i generacja/architektura (patrz odpowiednie punkty). Nierzadko zdarza się, że bardziej zaawansowany i/lub nowy dwurdzeniowy procesor jest mocniejszy niż czterordzeniowy układ starszej serii lub architektury. Dlatego sensowne jest porównywanie procesorów według liczby rdzeni w ramach tej samej serii i generacji.

Liczba wątków

Liczba wątków instrukcji, które procesor może wykonywać jednocześnie.

Pierwotnie każdy rdzeń fizyczny (patrz „Liczba rdzeni”) miał wykonywać jeden wątek instrukcji, a liczba wątków odpowiadała liczbie rdzeni. Jednak obecnie istnieje wiele procesorów obsługujących technologie wielowątkowe Hyper-Threading lub SMT (patrz poniżej) i zdolnych do wykonywania dwóch wątków jednocześnie na każdym rdzeniu. W takich modelach liczba wątków jest dwukrotnie większa niż liczba rdzeni - na przykład 8 wątków zostanie określonych w układzie czterordzeniowym.

Ogólnie rzecz biorąc, większa liczba wątków, przy wszystkich innych niezmiennie równych warunkach, ma pozytywny wpływ na szybkość i wydajność, ale zwiększa koszt procesora.

Częstotliwość taktowania

Liczba cykli zegara na sekundę, które procesor wytwarza w normalnym trybie pracy. Taktem nazywany jest oddzielny impuls elektryczny służący do przetwarzania danych i synchronizacji procesora z pozostałymi elementami systemu komputerowego. Różne operacje mogą wymagać zarówno ułamków zegara, jak i kilku cykli zegara, jednak w każdym przypadku częstotliwość taktowania jest jednym z głównych parametrów charakteryzujących wydajność i szybkość procesora - przy pozostałych warunkach równych, procesor o wyższej częstotliwości taktowania będzie działać szybciej i lepiej radzi sobie ze znacznymi obciążeniami. Jednocześnie należy pamiętać, że rzeczywistą wydajność chipa determinuje nie tylko częstotliwość zegara, ale także szereg innych cech - od serii i architektury (patrz odpowiednie punkty) po liczbę rdzeni i wsparcie dla specjalnych instrukcji. Dlatego sensowne jest porównywanie częstotliwości taktowania tylko z chipami o podobnej charakterystyce, należącymi do tej samej serii i generacji.

Częstotliwość TurboBoost / TurboCore

Maksymalna częstotliwość taktowania procesora, jaką można osiągnąć podczas pracy w trybie podkręcania Turbo Boost lub Turbo Core.

Nazwa „Turbo Boost” jest używana dla technologii podkręcania stosowanej przez firmę Intel, „Turbo Core” jest używana dla rozwiązań firmy AMD. Zasada działania w obu przypadkach jest taka sama: jeśli niektóre rdzenie nie są zaangażowane lub pracują pod obciążeniem poniżej maksymalnego, procesor może przenieść część obciążenia z obciążonych rdzeni na nie, zwiększając w ten sposób moc obliczeniową i wydajność. Praca w tym trybie charakteryzuje się wzrostem częstotliwości taktowania i jest to wskazane w tym przypadku.

Należy pamiętać, że mówimy o maksymalnej możliwej częstotliwości taktowania - nowoczesne procesory są w stanie dostosować tryb pracy w zależności od sytuacji, a przy stosunkowo niskim obciążeniu rzeczywista częstotliwość może być niższa niż maksymalna możliwa. Ogólne znaczenie tego parametru można znaleźć w rubryce „Częstotliwość zegara".

Pamięć podręczna L1

Rozmiar pamięci podręcznej poziomu 1 (L1) przewidziana w procesorze.

Pamięć podręczna — pośredni bufor pamięci, w którym podczas pracy procesora zapisywane są najczęściej używane dane z pamięci RAM. Przyspiesza to dostęp do nich i ma pozytywny wpływ na wydajność systemu. Im większa pamięć podręczna, tym więcej danych można w niej przechowywać w celu szybkiego dostępu i wyższej wydajności. Pamięć podręczna poziomu 1 ma najwyższą wydajność i najmniejszy rozmiar - do 128 KB. Jest integralną częścią każdego procesora.

Pamięć podręczna L2

Rozmiar pamięci podręcznej poziomu 2 (L2) przewidziana w procesorze.

Pamięć podręczna — pośredni bufor pamięci, w którym podczas pracy procesora zapisywane są najczęściej używane dane z pamięci RAM. Przyspiesza to dostęp do nich i pozytywnie wpływa na szybkość systemu. Im większa pojemność pamięci podręcznej — tym więcej danych może być w niej przechowywanych w celu szybkiego dostępu i wyższej wydajności. Objętość pamięci podręcznej L2 może wynosić do 12 MB, zdecydowana większość nowoczesnych procesorów ma taką pamięć podręczną.

Pamięć podręczna L3

Pojemność pamięci podręcznej poziomu 3 (L3), przewidziana w procesorze.

Pamięć podręczna — pośredni bufor pamięci, w którym podczas pracy procesora zapisywane są najczęściej używane dane z pamięci RAM. Przyspiesza to dostęp do nich i ma pozytywny wpływ na wydajność systemu. Im większa pamięć podręczna, tym więcej danych można w niej przechowywać w celu szybkiego dostępu i wyższej wydajności.

Model zintegrowanego układu graficznego

Model zintegrowanego rdzenia wideo zainstalowanego w procesorze. Patrz „Zintegrowana grafika”, aby uzyskać szczegółowe informacje na temat samego rdzenia. Znając nazwę modelu układu graficznego, możesz znaleźć jego szczegółowe cechy i ustalić wydajność procesora podczas pracy z wideo.

Jeśli chodzi o konkretne modele, procesory Intel wykorzystują grafikę HD, w szczególności 510, 530, 610, 630 i grafikę UHD z modelami 610, 630, 730, 750, 770. W układy od AMD wyposażane są następujące serie kart graficznych: href="/list/186/pr-51231/">Radeon Graphics, Radeon R5 series, Radeon R7 series i Radeon RX Vega.

Jednocześnie procesory bez rdzenia graficznego są odpowiednie do zakupu, jeśli planujesz składać komputer z kartą graficzną "od zera". W tym przypadku przepłacanie za procesor z rdzeniem graficznym nie ma sensu.
Dynamika cen
AMD Ryzen 5 Raven Ridge często porównują
AMD Ryzen 5 Summit Ridge często porównują