Uzwojenie alternatora (prądnicy)
—
Miedziane. Uzwojenie miedziane jest typowe dla zaawansowanych generatorów. Miedziany alternator charakteryzuje się wysoką przewodnością i niską rezystancją. Przewodność miedzi jest 1,7 razy większa niż przewodność aluminium, takie uzwojenie mniej się nagrzewa, a połączenia z tego metalu mogą wytrzymać spadki temperatury i obciążenia wibracyjne. Wśród wad miedzianego uzwojenia można tylko zauważyć wysoki koszt alternatora. Poza tym generatory z uzwojeniem miedzianym charakteryzują się wysoką niezawodnością i trwałością.
— Aluminiowe. Aluminiowe uzwojenie alternatora jest typowe dla niedrogich generatorów. Główne zalety aluminium to niewielka waga i niska cena, poza tym takie uzwojenie z reguły jest gorsze od analogów miedzianych. Na powierzchni aluminium tworzy się warstwa tlenkowa, która pojawia się wszędzie, nawet w miejscach lutowania stykowego. Warstwa tlenkowa zacieśnia styki i zapobiega pewnemu utrzymywaniu aluminiowych przewodów przez zewnętrzny oplot ochronny.
Model silnika
Nazwa modelu silnika zainstalowanego w generatorze. Znając tę nazwę, możesz w razie potrzeby znaleźć szczegółowe dane dotyczące silnika i wyjaśnić, w jaki sposób spełnia on Twoje wymagania. Ponadto dane modelu mogą być potrzebne do niektórych określonych zadań, w tym konserwacji i napraw.
Należy pamiętać, że współczesne generatory są często wyposażone w
markowe silniki renomowanych producentów: Honda, John Deere, Mitsubishi, Volvo itp. Takie silniki są droższe niż podobne urządzenia mało znanych marek, ale rekompensuje to wyższa jakość i/lub solidność warunków gwarancji, a w wielu przypadkach także łatwość odnalezienia części zamiennych i dodatkowej dokumentacji (takiej jak instrukcje obsługi specjalnej i drobnych napraw).
Pojemność silnika
Pojemność silnika w generatorze benzynowym lub dieslowskim (patrz „Paliwo”). W teorii większa pojemność zwykle oznacza większą moc, ale w praktyce nie jest to takie proste. Po pierwsze, moc właściwa silnie zależy od rodzaju paliwa, a w urządzeniach benzynowych także od rodzaju silnika spalinowego (patrz wyżej). Po drugie, podobne silniki o tej samej mocy mogą mieć różne pojemności i tutaj jest praktyczny punkt: przy tej samej mocy większy silnik zużywa więcej paliwa, ale sam może być tańszy.
Moc
Moc robocza silnika zainstalowanego w generatorze. Tradycyjnie wskazywana jest w koniach mechanicznych; 1 KM w przybliżeniu równa się 735 W.
Od tego wskaźnika zależy bezpośrednio przede wszystkim moc znamionowa generatora (patrz wyżej): w zasadzie nie może być wyższa niż moc silnika, ponadto część mocy silnika jest zużywana na ciepło, tarcie i inne straty. Im mniejsza różnica między tymi mocami, tym wyższa sprawność generatora i tym on jest oszczędniejszy. Co prawda, wysoka sprawność wpływa na koszt, ale ta różnica może się opłacić przy regularnym użytkowaniu ze względu na oszczędność paliwa.
Zużycie paliwa (obciążenie 50%)
Zużycie paliwa przez generator benzynowy lub wysokoprężny, a w przypadku modeli kombinowanych — przy zasilaniu benzyną (patrz "Paliwo").
Mocniejszy silnik nieuchronnie oznacza większe zużycie paliwa; jednak modele o tej samej mocy silnika mogą się pod tym względem różnić. W takich przypadkach warto wziąć pod uwagę, że model o mniejszym zużyciu zazwyczaj kosztuje więcej, ale ta różnica może dość szybko się zwrócić, zwłaszcza przy regularnym użytkowaniu. Ponadto, znając zużycie paliwa i pojemność zbiornika, możesz określić, na jak długo wystarczy jedno tankowanie; jednak w modelach inwerterowych przy częściowym obciążeniu rzeczywisty czas pracy może okazać się zauważalnie wyższy niż teoretyczny, aby uzyskać więcej szczegółów szczegółów patrz „Alternator (prądnica)”.
Pojemność zbiornika paliwa
Pojemność zbiornika paliwa zainstalowanego w generatorze.
Znając zużycie paliwa (patrz wyżej) i pojemność zbiornika można obliczyć czas pracy przy jednym tankowaniu (jeśli nie jest to podane w specyfikacji). Jednak pojemniejszy zbiornik okazuje się bardziej nieporęczny. Dlatego producenci wybierają zbiorniki w oparciu o ogólny poziom i „obżarstwo” generatora — w celu zapewnienia akceptowalnego czasu pracy bez znacznego wzrostu rozmiarów i wagi. Tak więc, ogólnie rzecz biorąc, parametr ten ma raczej charakter odniesienia niż praktycznego znaczenia.
Jeśli chodzi o liczby, to w modelach o małej mocy instalowane są zbiorniki o pojemności
5 – 10 l, a nawet
mniej; w ciężkim sprzęcie profesjonalnym wskaźnik ten może
przekroczyć 50 l.
Wskaźnik poziomu paliwa
Wskaźnik, który pozwala monitorować pozostałe paliwo w zbiorniku generatora. Najprostsze takie
wskaźniki są uruchamiane tylko wtedy, gdy poziom paliwa spadnie krytycznie, ostrzegając o konieczności tankowania; bardziej zaawansowane stale wyświetlają poziom pozostałego paliwa. Jednak w każdym przypadku funkcja ta ułatwia monitorowanie dopływu paliwa i zmniejsza ryzyko zatrzymania generatora z powodu zapomnienia o zatankowaniu.
Łączna liczba gniazd
Całkowita liczba gniazd 230 i/lub 400 V przewidziana w konstrukcji urządzenia.
Liczba ta odpowiada liczbie urządzeń, które można jednocześnie podłączyć do agregatu bez użycia rozgałęźników, przedłużaczy itp. Co więcej, jeśli mówimy o modelu trójfazowym (patrz "Napięcie wyjściowe") z różnymi typami gniazd — liczbę tych i innych należy doprecyzować osobno, gdyż w różnych modelach zestaw może być różny. Na przykład, agregat dla którego zadeklarowana jest obecność
3 gniazd, może mieć 1 gniazdo trójfazowe i 2 gniazda jednofazowe lub 2 gniazda trójfazowe i 1 gniazdo jednofazowe. Ogólnie rzecz biorąc, najskromniejsze współczesne agregaty wyposażone są w
1 gniazdo, natomiast modele z
2 gniazdami są bardziej rozpowszechnione; w najmocniejszych modelach liczba ta może wynosić
4 gniazda i więcej.
Należy dodać, że możliwości podłączenia różnych urządzeń są ograniczone nie tylko liczbą gniazd, ale także mocą znamionową agregatu prądotwórczego (szczegóły powyżej).
Gniazda 230 V
Liczba gniazd o napięciu 230 V przewidziana w konstrukcji generatora, a także rodzaj złączy stosowanych w tych gniazdach.
Rodzaj złącza w tym przypadku jest wskazywany według maksymalnego prądu dozwolonego dla gniazda — na przykład „2 szt. na 16 A”. Najpopularniejsze opcje dla gniazd 230 V to
16 A,
32 A i 63 A. Podkreślamy, że ampery w tym oznaczeniu nie są rzeczywistym prądem, jaki może wydać generator, ale własnym ograniczeniem gniazda; rzeczywiste natężenie prądu jest zwykle zauważalnie niższe. Mówiąc prościej, jeśli na przykład generator ma gniazdo 32 A, prąd wyjściowy na nim nie osiągnie 32 A; konkretna liczba amperów będzie zależeć od mocy znamionowej i maksymalnej urządzenia (patrz powyżej). Jeśli więc dla naszego przykładu przyjmiemy moc znamionową 5 kW i moc maksymalną 6 kW, to do gniazda 230 V taki generator może dać nie więcej niż 5 kW / 230 V = 22,7 A nominalnie i 6 kW / 230 V = 27, 3 A szczytowo. Jeśli moc trzeba podzielić na kilka gniazd, to odpowiednio będzie jeszcze mniej.
Jeśli chodzi o poszczególne typy złączy, to im wyższy prąd dopuszczalny dla gniazda, tym wyższe wymagania dotyczące jego niezawodności i jakości ochrony. W związku z tym z reguły do gniazd o większej mocy można podłączać wtyczki o mniejszej mocy (bezpośrednio lub przez przejściówkę), ale nie odwrotnie. Jeśli gniazd jest kilka, to ze względu na ich rodzaj można z całą pewnością oszacować rozkład między n
...imi całej mocy generatora: między dwoma identycznymi złączami moc ta jest zwykle dzielona równo, a na gniazdo o większej liczbie amperów więcej przypada i mocy. Jednak szczegółowe informacje w tej sprawie należy wyjaśniać w każdym przypadku oddzielnie; warto również rozważyć ewentualne gniazda 400 V (patrz poniżej).