Polska
Katalog   /   Komputery   /   Podzespoły   /   Chłodzenia komputerowe

Porównanie NZXT Kraken Elite 360 (2024) vs Asus ROG Ryujin III 360

Dodaj do porównania
NZXT Kraken Elite 360 (2024)
Asus ROG Ryujin III 360
NZXT Kraken Elite 360 (2024)Asus ROG Ryujin III 360
Porównaj ceny 10Porównaj ceny 7
TOP sprzedawcy
Podstawowe
Przeznaczeniedo procesorado procesora
Rodzajchłodzenie wodnechłodzenie wodne
Wentylator
Liczba wentylatorów3 szt.3 szt.
Średnica wentylatora120 mm120 mm
Grubość wentylatora25 mm25 mm
Rodzaj łożyskahydrodynamiczne (Fluid Dynamic Bearing)hydrodynamiczne
Min. prędkość obrotowa500 obr./min450 obr./min
Maks. prędkość obrotowa2000 obr./min2000 obr./min
Regulacja obrotówautomatyczna (PWM)automatyczna (PWM)
Maks. przepływ powietrza73.47 CFM71.6 CFM
Ciśnienie statyczne4.5 mm H2O3.94 mm H2O
Średni czas bezawaryjnej pracy60 tys. h
Możliwość wymiany
Poziom hałasu30 dB30 dB
Typ podłączenia4-pin4-pin
Radiator
Materiał radiatoraaluminiumaluminium
Materiał podstawymiedźmiedź
Socket
AMD AM4
AMD AM5
Intel 1150
Intel 1155/1156
Intel 1151 / 1151 v2
Intel 1200
Intel 1700 / 1851
AMD AM4
AMD AM5
Intel 1150
Intel 1155/1156
Intel 1151 / 1151 v2
Intel 1200
Intel 1700 / 1851
Chłodzenie wodne
Rozmiar radiatora360 mm360 mm
Rozmiar pompy89x91x101 mm
Prędkość obrotowa pompy2800 obr./min3600 obr./min
Długość rurki420 mm400 mm
Typ podłączenia pompy3-pin + SATA
Dane ogólne
Wyświetlacz
Rodzaj mocowaniadwustronne (backplate)dwustronne (backplate)
Gwarancja producenta6 lat6 lat
Wymiary401x120x27 mm399x120x30 mm
Data dodania do E-Kataloglistopad 2024czerwiec 2023
Glosariusz

Rodzaj łożyska

Rodzaj łożyska zastosowanego w wentylatorach (wentylatorze) układu chłodzenia.

Łożysko jest częścią pomiędzy obrotową osią wentylatora a nieruchomą podstawą, która podtrzymuje oś i zmniejsza tarcie. W nowoczesnych wentylatorach występują następujące typy łożysk:

- Ślizgowe. Działanie tych łożysk opiera się na bezpośrednim kontakcie dwóch stałych powierzchni, starannie wypolerowanych w celu zmniejszenia tarcia. Takie części są proste, niezawodne i trwałe, lecz ich sprawność jest raczej niska - toczenie, a tym bardziej hydrodynamiczna i magnetyczna zasada działania (patrz niżej) zapewniają znacznie mniejsze tarcie.

- Toczne. Nazywane również „łożyskami kulkowymi”, ponieważ „pośrednikami” między osią obrotu a stałą podstawą są kulki (rzadziej - wałki cylindryczne), zamocowane w specjalnym pierścieniu. Gdy oś się obraca, takie kulki toczą się między nią a podstawą, dzięki czemu siła tarcia jest bardzo niska - zauważalnie mniejsza niż w łożyskach ślizgowych. Z drugiej strony konstrukcja okazuje się droższa i bardziej złożona, a pod względem niezawodności jest nieco gorsza zarówno od łożysk ślizgowych, jak i bardziej zaawansowanych urządzeń hydrodynamicznych (patrz poniżej). Choć łożyska toczne są w naszych czasach dość rozpowszechnione, to jednak generalnie są one znacznie mniej powszechne niż wyżej wymienione odmiany.

- Hydrodynamiczny .... Łożyska tego typu wypełnione są specjalnym płynem; obracając się tworzy on warstwę, po której ślizga się ruchoma część łożyska. W ten sposób można uniknąć bezpośredniego kontaktu między twardymi powierzchniami i znacznie zmniejszyć tarcie w porównaniu z poprzednimi odmianami. Ponadto łożyska te są ciche i bardzo niezawodne. Wśród ich wad można zaznaczyć stosunkowo wysoki koszt, jednak w praktyce punkt ten często okazuje się niewidoczny na tle kosztu całego układu. Dlatego ten wariant jest w naszych czasach niezwykle popularny, występuje on w układach chłodzenia na wszystkich poziomach - od niedrogich po zaawansowane.

- Centrowanie magnetyczne . Łożyska oparte na zasadzie lewitacji magnetycznej: oś obrotu jest „zawieszona” w polu magnetycznym. W ten sposób można (podobnie jak w hydrodynamicznych) uniknąć kontaktu między powierzchniami stałymi i dodatkowo zmniejszyć tarcie. Uważane są za najbardziej zaawansowany rodzaj łożysk, są niezawodne i ciche, lecz są drogie.

Min. prędkość obrotowa

Najniższa prędkość, przy której może działać wentylator chłodzący. Jest wskazywana tylko dla modeli z regulatorem prędkości (patrz poniżej).

Im niższa prędkość minimalna (przy tym samym maksimum) - tym szerszy jest zakres regulacji prędkości i tym bardziej możesz spowolnić wentylator, gdy duża wydajność nie jest potrzebna (takie spowolnienie pozwala zmniejszyć zużycie energii i poziom hałasu). Z drugiej strony szeroki zakres ma odpowiedni wpływ na koszt.

Maks. przepływ powietrza

Maksymalny przepływ powietrza, jaki może wytworzyć wentylator chłodzący; jest mierzony w CFM - stopach sześciennych na minutę.

Im wyższy liczba CFM, tym wydajniejszy jest wentylator. Z drugiej strony wysoka wydajność wymaga albo dużej średnicy (co wpływa na rozmiar i koszt) albo dużej prędkości (co zwiększa hałas i wibracje). Dlatego przy wyborze warto nie gonić za maksymalnym przepływem powietrza, lecz stosować specjalne formuły, które pozwalają obliczyć wymaganą liczbę CFM w zależności od rodzaju i mocy chłodzonego elementu oraz innych parametrów. Takie formuły można znaleźć w specjalnych źródłach. Jeśli chodzi o konkretne liczby, to w najskromniejszych systemach wydajność nie przekracza 30 CFM, a w najmocniejszych systemach może to być nawet 80 CFM, a nawet więcej.

Należy również pamiętać, że rzeczywista wartość przepływu powietrza przy największej prędkości jest zwykle niższa od deklarowanego maksimum; patrz "Ciśnienie statyczne", aby uzyskać szczegółowe informacje.

Ciśnienie statyczne

Maksymalne statyczne ciśnienie powietrza generowane przez wentylator podczas pracy.

Parametr ten mierzony jest w następujący sposób: jeżeli wentylator jest zainstalowany na rurze zaślepionej, z której nie ma wylotu powietrza, i ustawiony do nadmuchu, to ciśnienie osiągane w rurze będzie odpowiadało ciśnieniu statycznemu. W praktyce parametr ten określa całkowitą sprawność wentylatora: im wyższe ciśnienie statyczne (pozostałe parametry są takie same), tym łatwiej wentylatorowi „przepychać” wymaganą ilość powietrza przez przestrzeń o dużym oporze, np. przez wąskie szczeliny radiatora lub przez obudowę wypełnioną podzespołami.

Parametr ten również jest używany w niektórych specyficznych obliczeniach, jednak obliczenia te są dość skomplikowane i zwykły użytkownik z reguły nie jest potrzebny - są one związane z kwestiami, które są istotne głównie dla entuzjastów komputerowych. Więcej na ten temat można przeczytać w specjalnych źródłach.

Średni czas bezawaryjnej pracy

Całkowity czas, przez który wentylator chłodzący nie ulegnie awarii. Należy pamiętać, że po wyczerpaniu tego czasu urządzenie niekoniecznie ulegnie zepsuciu – wiele współczesnych wentylatorów ma znaczny zapas wytrzymałości i jest w stanie pracować jeszcze przez jakiś czas. Przy tym, warto oceniać ogólną trwałość układu chłodzenia właśnie według tego parametru.

Możliwość wymiany

Możliwość wymiany standardowego wentylatora przez samego użytkownika - bez ingerencji serwisu lub specjalistów. Maksimum które może być wymagane do takiej procedury, to posiadanie najprostszych narzędzi, np. śrubokrętu; czasami są one dostarczane z układem chłodzenia.

Wentylator, jako najbardziej mobilna część każdego układu chłodzenia, jest bardziej podatny na awarie i zepsucia. W takich przypadkach taniej (i częściej - mądrzej) jest wymienić tylko tę część, niż kupować zupełnie nowy układ. Ponadto, jeśli chcesz, możesz wymienić sprawny wentylator - na przykład na mocniejszy lub mniej hałaśliwy.

Rozmiar pompy

Wymiary pompy, w którą wyposażony jest układ chłodzenia wodą.

Najczęściej parametr ten jest wskazywany dla wszystkich trzech wymiarów: długości, szerokości i grubości (wysokości). Te wymiary determinują dwa punkty: przestrzeń wymaganą do zainstalowania pompy oraz średnicę jej części roboczej. W przypadku pierwszego wszystko jest dość oczywiste; zauważamy tylko, że w niektórych systemach pompa jednocześnie pełni rolę bloku wodnego i jest instalowana bezpośrednio na chłodzonym elemencie systemu i właśnie tam powinno być wystarczająco dużo miejsca. Średnica w przybliżeniu odpowiada długości i szerokości pompy (lub mniejszemu z tych wymiarów, jeśli nie są one jednakowe - na przykład 55 mm w modelu 60x55x43 mm). Od tego parametru zależy kilka funkcji operacyjnych. Tak więc duża średnica pompy pozwala osiągnąć wymaganą wydajność przy stosunkowo niskiej prędkości obrotowej; co z kolei zmniejsza poziom hałasu i zwiększa ogólną niezawodność konstrukcji. Z drugiej strony duża pompa jest droższa i zajmuje więcej miejsca.

Prędkość obrotowa pompy

Prędkość, z jaką obraca się część robocza pompy, standardowo przewidzianej w układzie chłodzenia wodą.

Wysoka prędkość z jednej strony wpływa pozytywnie na wydajność, z drugiej zaś zwiększa poziom hałasu i zmniejsza MTBF. Dlatego przy tej samej wydajności stosunkowo „wolne” pompy są uważane za bardziej zaawansowane, w których wymagane objętości pompowania są osiągane ze względu na dużą średnicę części roboczej, a nie ze względu na prędkość.

Długość rurki

Długość rur łączących blok wodny z chłodnicą w układzie chłodzenia wodą. Z definicji są to co najmniej 2 rury (dostawcza i „powrotna”), a czasem nawet więcej, lecz wszystkie mają tę samą długość. Ta długość odpowiada największej odległości od bloku wodnego do radiatora możliwej dla tego systemu w standardowej konfiguracji; ten szczegół należy wziąć pod uwagę przy wyborze chłodzenia wodą dla określonego miejsca instalacji. Ogólnie większość modeli ma 38 lub 40 cm , co wystarcza na podstawowe potrzeby.
Dynamika cen
NZXT Kraken Elite 360 (2024) często porównują
Asus ROG Ryujin III 360 często porównują