Polska
Katalog   /   Komputery   /   Podzespoły   /   Chłodzenia komputerowe

Porównanie ARCTIC Liquid Freezer III 360 A-RGB vs ARCTIC Liquid Freezer III 360

Dodaj do porównania
ARCTIC Liquid Freezer III 360 A-RGB
ARCTIC Liquid Freezer III 360
ARCTIC Liquid Freezer III 360 A-RGBARCTIC Liquid Freezer III 360
Porównaj ceny 2Porównaj ceny 1
Opinie
0
1
0
1
TOP sprzedawcy
Podstawowe
Przeznaczeniedo procesorado procesora
Rodzajchłodzenie wodnechłodzenie wodne
Wentylator
Liczba wentylatorów3 szt.3 szt.
Średnica wentylatora120 mm120 mm
Grubość wentylatora25 mm25 mm
Rodzaj łożyskahydrodynamicznehydrodynamiczne
Min. prędkość obrotowa200 obr./min200 obr./min
Maks. prędkość obrotowa2000 obr./min1800 obr./min
Regulacja obrotówautomatyczna (PWM)automatyczna (PWM)
Maks. przepływ powietrza48.82 CFM56.3 CFM
Ciśnienie statyczne1.85 mm H2O2.2 mm H2O
Możliwość wymiany
Typ podłączenia4-pin4-pin
Radiator
Materiał radiatoraaluminiumaluminium
Materiał podstawymiedźmiedź
Socket
AMD AM4
AMD AM5
Intel 1700 / 1851
AMD AM4
AMD AM5
Intel 1700 / 1851
Chłodzenie wodne
Rozmiar radiatora360 mm360 mm
Rozmiar pompy108.5x91x68.5 mm
Prędkość obrotowa pompy2800 obr./min2800 obr./min
Długość rurki450 mm450 mm
Typ podłączenia pompy4-pin4-pin
Dane ogólne
Podświetlenie
Kolor podświetleniaARGB
Synchronizacja podświetleniamulti compatibility
Zasilanie podświetlenia3-pin (5V)
Rodzaj mocowaniadwustronne (backplate)dwustronne (backplate)
Gwarancja producenta6 lat6 lat
Wymiary398x120x38 mm398x120x38 mm
Waga1870 g1840 g
Data dodania do E-Katalogluty 2024luty 2024
Glosariusz

Maks. prędkość obrotowa

Najwyższa prędkość obrotowa jaką obsługuje wentylator układu chłodzenia; w przypadku modeli bez regulatora prędkości (patrz poniżej), podawana jest prędkość nominalna. W „najwolniejszych” współczesnych wentylatorach maksymalna prędkość nie przekracza 1000 obr./min, w „najszybszych” może to być do 2500 obr./min, a nawet więcej.

Należy pamiętać, że parametr ten jest ściśle powiązany ze średnicą wentylatora (patrz wyżej): im mniejsza średnica, tym wyższe muszą być obroty, aby osiągnąć żądane wartości przepływu powietrza. W takim przypadku prędkość obrotowa wpływa bezpośrednio na poziom hałasu i wibracji. Dlatego uważa się, że najlepiej jest zapewnić wymaganą objętość powietrza dużymi i stosunkowo „wolnymi” wentylatorami; a stosowanie „szybkich” małych modeli ma sens w przypadku, gdy kompaktowość ma kluczowe znaczenie. Przy porównaniu prędkości modeli tej samej wielkości - wyższe obroty mają pozytywny wpływ na wydajność, lecz zwiększają nie tylko poziom hałasu, ale także wzrost ceny i zużycia energii.

Maks. przepływ powietrza

Maksymalny przepływ powietrza, jaki może wytworzyć wentylator chłodzący; jest mierzony w CFM - stopach sześciennych na minutę.

Im wyższy liczba CFM, tym wydajniejszy jest wentylator. Z drugiej strony wysoka wydajność wymaga albo dużej średnicy (co wpływa na rozmiar i koszt) albo dużej prędkości (co zwiększa hałas i wibracje). Dlatego przy wyborze warto nie gonić za maksymalnym przepływem powietrza, lecz stosować specjalne formuły, które pozwalają obliczyć wymaganą liczbę CFM w zależności od rodzaju i mocy chłodzonego elementu oraz innych parametrów. Takie formuły można znaleźć w specjalnych źródłach. Jeśli chodzi o konkretne liczby, to w najskromniejszych systemach wydajność nie przekracza 30 CFM, a w najmocniejszych systemach może to być nawet 80 CFM, a nawet więcej.

Należy również pamiętać, że rzeczywista wartość przepływu powietrza przy największej prędkości jest zwykle niższa od deklarowanego maksimum; patrz "Ciśnienie statyczne", aby uzyskać szczegółowe informacje.

Ciśnienie statyczne

Maksymalne statyczne ciśnienie powietrza generowane przez wentylator podczas pracy.

Parametr ten mierzony jest w następujący sposób: jeżeli wentylator jest zainstalowany na rurze zaślepionej, z której nie ma wylotu powietrza, i ustawiony do nadmuchu, to ciśnienie osiągane w rurze będzie odpowiadało ciśnieniu statycznemu. W praktyce parametr ten określa całkowitą sprawność wentylatora: im wyższe ciśnienie statyczne (pozostałe parametry są takie same), tym łatwiej wentylatorowi „przepychać” wymaganą ilość powietrza przez przestrzeń o dużym oporze, np. przez wąskie szczeliny radiatora lub przez obudowę wypełnioną podzespołami.

Parametr ten również jest używany w niektórych specyficznych obliczeniach, jednak obliczenia te są dość skomplikowane i zwykły użytkownik z reguły nie jest potrzebny - są one związane z kwestiami, które są istotne głównie dla entuzjastów komputerowych. Więcej na ten temat można przeczytać w specjalnych źródłach.

Rozmiar pompy

Wymiary pompy, w którą wyposażony jest układ chłodzenia wodą.

Najczęściej parametr ten jest wskazywany dla wszystkich trzech wymiarów: długości, szerokości i grubości (wysokości). Te wymiary determinują dwa punkty: przestrzeń wymaganą do zainstalowania pompy oraz średnicę jej części roboczej. W przypadku pierwszego wszystko jest dość oczywiste; zauważamy tylko, że w niektórych systemach pompa jednocześnie pełni rolę bloku wodnego i jest instalowana bezpośrednio na chłodzonym elemencie systemu i właśnie tam powinno być wystarczająco dużo miejsca. Średnica w przybliżeniu odpowiada długości i szerokości pompy (lub mniejszemu z tych wymiarów, jeśli nie są one jednakowe - na przykład 55 mm w modelu 60x55x43 mm). Od tego parametru zależy kilka funkcji operacyjnych. Tak więc duża średnica pompy pozwala osiągnąć wymaganą wydajność przy stosunkowo niskiej prędkości obrotowej; co z kolei zmniejsza poziom hałasu i zwiększa ogólną niezawodność konstrukcji. Z drugiej strony duża pompa jest droższa i zajmuje więcej miejsca.

Podświetlenie

Obecność własnego podświetlenia w konstrukcji układu chłodzenia.

Podświetlenie pełni funkcję czysto estetyczną - nadaje urządzeniu stylowy wygląd, który dobrze komponuje się z pozostałymi elementami w oryginalnym designie. Dzięki temu takie układy chłodzenia są szczególnie doceniane przez graczy i fanów modyfikacji zewnętrznej PC - zwłaszcza, że oświetlenie może być różne, a w najbardziej zaawansowanych modelach przewidziana jest nawet synchronizacja podświetlenia z innymi podzespołami (patrz niżej). Z drugiej strony funkcja ta nie wpływa na wydajność i charakterystyki robocze, lecz nieuchronnie wpływa na całkowity koszt, czasami dość zauważalnie. Dlatego jeśli wygląd nie jest dla Ciebie ważny, najlepszym wyborem najprawdopodobniej będzie system chłodzenia bez podświetlenia.

Kolor podświetlenia

Kolor podświetlenia zainstalowanego w układzie chłodzenia.

Więcej szczegółów na temat samego podświetlenia znajdziesz powyżej. Tutaj zauważamy, że w podświetleniu nowoczesnych systemów chłodzenia występuje zarówno jeden kolor (najczęściej czerwony lub niebieski , rzadziej zielony , żółty , biały lub fioletowy ) jak i układy wielokolorowe, takie jak RGB i ARGB . Wybór podświetlenia jednokolorowego zależy głównie od preferencji estetycznych, jednak dwie ostatnie odmiany należy omówić osobno.

Podstawowa zasada działania systemów RGB i ARGB jest taka sama: konstrukcja przewiduje zestaw diod LED o trzech podstawowych kolorach - czerwonym (Red), zielonym (Green) i niebieskim (Blue), a poprzez zmianę liczby i jasności włączonych diod LED można sterować nie tylko intensywnością, lecz także odcieniem poświaty. Różnica między tymi odmianami tkwi w funkcjonalności: systemy RGB obsługują ograniczony zestaw kolorów (zwykle do półtora tuzina, a nawet mniej), natomiast ARGB pozwala wybrać niemal dowolny odcień z całej dostępnej palety barw. Jednocześnie oba warianty mogą obsługiwać synchronizację podświetlenia (patrz poniżej); na ogół funkcja ta nie jest wymagana w systemach RGB i...ARGB, lecz jest w nich stosowana prawie zawsze.

Synchronizacja podświetlenia

Technologia synchronizacji podświetlenia zapewniona w układzie chłodzenia z wbudowanym oświetleniem (patrz wyżej).

Sama synchronizacja pozwala "dopasować" podświetlenie chłodzenia do podświetlenia innych elementów systemu - płyty głównej, procesora, karty graficznej, obudowy, klawiatury, myszy itp. Dzięki tej koordynacji wszystkie elementy mogą synchronicznie zmieniać kolor, jednocześnie włączając się lub wyłączając itp. Konkretne cechy działania takiego podświetlenia zależą od zastosowanej technologii synchronizacji i z reguły każdy producent ma swoją własną technologię (Aura Sync dla Asusa, RGB Fusion dla Gigabyte itp.). Od tego zależy również kompatybilność podzespołów: wszystkie muszą obsługiwać tę samą technologię. Najłatwiej więc osiągnąć kompatybilność podświetlenia montując podzespoły jednego producenta. Jednak wśród systemów chłodzenia znajdują się rozwiązania w formacie multi-kompatybilności - są one kompatybilne z kilkoma technologiami synchronizacji jednocześnie; konkretna lista kompatybilności jest zwykle wskazywana w szczegółowych specyfikacjach takich modeli.

Zasilanie podświetlenia

Rodzaj złącza zasilania układu podświetlenia. Najczęściej do tych celów wykorzystywane są następujące interfejsy:

— 3-pinowe (5 V). Trójpinowe złącze o napięciu roboczym 5 V. Za jego pośrednictwem ma zasilać odpowiednie systemy oświetlenia dekoracyjnego.

— 4-pinowe (12 V). Czterostykowe złącze może dostarczać napięcie 12 V do obsługi podświetlenia.

- LINK do iCUE. Autorskie złącze firmy Corsair umożliwiające synchronizację oświetlenia i sterowanie wentylatorami układu chłodzenia. Aby elastycznie dostosować efekty świetlne i prędkość wentylatorów, skorzystaj z autorskiego oprogramowania Corsair iCUE.
Dynamika cen
ARCTIC Liquid Freezer III 360 A-RGB często porównują
ARCTIC Liquid Freezer III 360 często porównują