Polska
Katalog   /   Komputery   /   Laptopy i akcesoria   /   Laptopy

Porównanie Pixus LINK 15 [Link 8/256] vs HP 15-fd0000 [15-fd0116ua]

Dodaj do porównania
Pixus LINK 15 (Link 8/256)
HP 15-fd0000 (15-fd0116ua)
Pixus LINK 15 [Link 8/256]HP 15-fd0000 [15-fd0116ua]
Wkrótce w sprzedażyWkrótce w sprzedaży
TOP sprzedawcy
Rodzajlaptoplaptop
Wyświetlacz
Przekątna ekranu15.6 "15.6 "
Rodzaj matrycyIPSIPS
Powłoka ekranumatowaantyrefleksyjna
Rozdzielczość ekranu1920x1080 (16:9)1920x1080 (16:9)
Częstotliwość odświeżania60 Hz60 Hz
Jasność250 nity
Przestrzeń barw (NTSC)45 %
Procesor
SeriaProcessor N-seriesProcessor N-series
ModelN100N100
Nazwa kodowaAlder Lake-N (13th Gen)Alder Lake-N (13th Gen)
Liczba rdzeni44
Liczba wątków44
Częstotliwość taktowania1 GHz1 GHz
Częstotliwość TurboBoost / TurboCore3.4 GHz3.4 GHz
Wydzielanie ciepła (CPU TDP)6 W6 W
Test Passmark CPU Mark5617 punkty(ów)5651 punkty(ów)
Pamięć RAM
Pojemność pamięci8 GB8 GB
Maksymalna obsługiwana ilość pamięci RAM32 GB16 GB
Rodzaj pamięciDDR4DDR4
Częstotliwość taktowania pamięci3200 MHz3200 MHz
Liczba gniazd pamięci11
Karta graficzna
Rodzaj karty graficznejzintegrowanazintegrowana
Seria karty graficznejIntel HD GraphicsIntel HD Graphics
Model karty graficznejUHD Graphics 24EUsUHD Graphics 24EUs
Test 3DMark0610126 punkty(ów)10126 punkty(ów)
Test 3DMark Vantage P5775 punkty(ów)5775 punkty(ów)
Dysk
Rodzaj dyskuSSD M.2 NVMeSSD M.2 NVMe
Pojemność dysku256 GB512 GB
Interfejs dysku SSD M.2PCI-E 4.0 4xPCI-E 3.0
Rozmiar dysku M.222x80 mm
Złącza i interfejsy
Złącza
HDMI
HDMI
v 1.4b
Czytnik kart pamięci
USB A 5Gbps (3.2 gen1)3 szt.2 szt.
USB C 5Gbps (3.2 gen1)1 szt.1 szt.
Obsługa Alternate Mode
Liczba obsługiwanych monitorów11
LAN (RJ-45)1 Gb/s
Wi-FiWi-Fi 6 (802.11ax)Wi-Fi 6 (802.11ax)
Bluetoothv 5.1v 5.3
Multimedia
Kamera internetowa1920x1080 (Full HD)1280x720 (HD)
Zaślepka na kamerę
Liczba głośników2 szt.2 szt.
Zabezpieczenia
blokada kensington / noble
 
Klawiatura
Podświetleniebiałebrak
Konstrukcja klawiszywyspowewyspowe
Klawiatura numeryczna
Sterowanietouchpadtouchpad
Akumulator
Pojemność baterii6000 mAh
Pojemność baterii45 W*h41 W*h
Napięcie baterii7.6 В
Maks. czas pracy9.75 h
Zasilanie z USB C (Power Delivery)
Szybkie ładowanie
Czas ładowania50% w 45 minut
Moc dołączonego zasilacza45 W
Dane ogólne
Preinstalowany system operacyjnyWin 11 ProDOS
Materiał obudowymatowe tworzywo sztucznealuminium / tworzywo sztuczne
Wymiary (SxGxW)360x230x23 mm360x236x19 mm
Waga1.6 kg1.59 kg
Kolor obudowy
Data dodania do E-Kataloggrudzień 2024listopad 2024
Glosariusz

Powłoka ekranu

Błyszcząca. Błyszcząca powierzchnia poprawia ogólną jakość obrazu: przy pozostałych warunkach równych obraz na takim ekranie wygląda jaśniej i bardziej kolorowo niż na matowym. Z drugiej strony na takiej powierzchni bardzo zauważalne są zanieczyszczenia, a w jasnym otoczeniu pojawia się na niej dużo odblasków, które mogą mocno przeszkadzać w oglądaniu. Dlatego zamiast klasycznego połysku w laptopach coraz częściej stosuje się antyrefleksyjną wersję takiej powłoki (patrz poniżej). Niemniej jednak ta opcja nadal nie traci na popularności: kosztuje nieco mniej niż powłoka antyrefleksyjna, a przy miękkim, stosunkowo słabym oświetleniu może nawet zapewnić przyjemniejszy dla oka obraz.

Matowa. Matowa powłoka jest niedroga i nie powoduje odblasków, nawet przy dość jasnym oświetleniu. Z drugiej strony obraz na takim ekranie okazuje się zauważalnie ciemniejszy niż na podobnym błyszczącym wyświetlaczu. Jednak ten szczegół można skompensować różnymi rozwiązaniami konstrukcyjnymi (przede wszystkim dobrym zapasem jasności); więc tę opcję można znaleźć we wszystkich kategoriach nowoczesnych laptopów - od niedrogich modeli do pracy z dokumentami po najlepsze konfiguracje do gier.

Błyszcząca (antyrefleksyjna). Odmiana opisanej powyżej błyszczącej powłoki, mająca na celu ograniczenie odblasków z zewnętrznych źródeł światła. Takie ekrany naprawdę odbijają zauważalnie...mniej niż tradycyjne błyszczące (lub nawet nie dają odblasków); jednocześnie pod względem jakości obrazu są co najmniej lepsze od matowych. Więc to właśnie ten rodzaj powłoki jest obecnie najbardziej popularny.

Jasność

Maksymalna jasność, jaką może zapewnić ekran laptopa.

Im jaśniejsze światło otoczenia, tym jaśniejszy musi być ekran laptopa, w przeciwnym razie obraz na nim może być trudny do odczytania. I odwrotnie, przy słabym świetle otoczenia wysoka jasność nie jest konieczna - powoduje duże obciążenie oczu (jednak w tym przypadku wszystkie współczesne laptopy są wyposażone w kontrolę jasności). W związku z tym im wyższy wskaźnik ten, tym bardziej uniwersalny jest ekran, tym szerszy jest zakres warunków, w których można go efektywnie używać. Wadą tych korzyści jest wzrost ceny i zużycia energii.

Jeśli chodzi o konkretne wartości, wiele współczesnych laptopów ma jasność 250 – 300 nitów lub nawet mniej. To wystarcza do pracy przy sztucznym oświetleniu o średniej intensywności, lecz przy jasnym naturalnym świetle mogą już wystąpić problemy z widocznością. Do użytku przy słonecznej pogodzie (szczególnie na zewnątrz) pożądany jest zapas jasności co najmniej 300 – 350 nitów. A w najbardziej zaawansowanych modelach parametr ten może wynosić 350 – 400 nitów, 401 – 500 nitów a nawet ponad 500 nitów.

Przestrzeń barw (NTSC)

Przestrzeń barw matrycy laptopa zgodnie z modelem przestrzeni barw NTSC.

Przestrzeń barw opisuje zakres barw, które można wyświetlić na ekranie. Podaje się w procentach, ale nie w odniesieniu do całego widma widocznych barw, ale w odniesieniu do warunkowej przestrzeni barw (modelu przestrzeni barw). Wynika to z faktu, że żaden nowoczesny ekran nie jest w stanie wyświetlić wszystkich barw widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości ekranu, tym lepsze jest jego odwzorowanie barw.

W szczególności NTSC jest jednym z pierwszych modeli przestrzeni barw stworzonych w 1953 roku dla telewizji kolorowej. Nie jest używany przy produkcji nowoczesnych matryc LCD, ale służy do ich opisu i porównania. NTSC obejmuje szerszy zakres barw niż standardowo używany w technologii komputerowej sRGB; dlatego nawet niewielka liczba procentów w tym przypadku odpowiada dość szerokiej przestrzeni. Na przykład wartość 72% i więcej według NTSC już uważana jest za dobry wskaźnik do wykorzystania w projektowaniu i grafice. W tym samym czasie te same liczby NTSC na różnych ekranach mogą odpowiadać różnym wartościom sRGB; więc jeśli dokładne odwzorowanie barw jest dla użytkownika kluczowe, szczegóły te należy wyjaśnić przed zakupem.

Warto też zaznaczyć, że wśród poszczególnych monitorów łatwiej jest znaleźć ekran z szeroką przestrzenią barw; jest też tańszy niż laptop o podobnej specyfikacji wyświ...etlacza. Dlatego wybór laptopa z wysokiej klasy ekranem ma sens głównie wtedy, gdy przenośność jest nie mniej ważna niż wysokiej jakości odwzorowanie barw.

Test Passmark CPU Mark

Wynik pokazany przez procesor laptopa w teście Passmark CPU Mark.

Passmark CPU Mark to kompleksowy test, bardziej szczegółowy i niezawodny niż popularny 3DMark06 (patrz wyżej). Sprawdza nie tylko możliwości gier procesora, ale także jego wydajność w innych trybach, na podstawie czego wyświetla ogólny wynik; zgodnie z tym wynikiem można dość rzetelnie ocenić procesor jako całość (im więcej punktów, tym wyższa wydajność).

Maksymalna obsługiwana ilość pamięci RAM

Maksymalna ilość pamięci RAM, którą można zainstalować na laptopie. Zależy w szczególności od rodzaju stosowanych modułów pamięci, a także od liczby gniazd na nie. Warto zwrócić uwagę na parametr ten przede wszystkim, jeśli laptop jest kupowany z dalszą perspektywą na rozszerzenie ilości RAM, a ilość faktycznie zainstalowanej w nim pamięci jest zauważalnie mniejsza niż maksymalna dostępna. Tak więc w laptopach pamięć RAM można rozbudować do 16 GB, 24 GB, 32 GB, 48 GB, 64 GB i nawet więcej — 128 GB.

Pojemność dysku

Pojemność dysku zainstalowanego w laptopie. Jeśli istnieje kilka oddzielnych dysków (na przykład HDD+SSD, patrz „Rodzaj dysku”) - w danym rozdziale wskazuje się pojemność najbardziej pojemnego nośnika (w naszym przykładzie HDD).

Bardziej pojemny dysk pozwala na przechowywanie większej ilości danych, ale jest droższy. Warto pamiętać, że cena zależy również od rodzaju nośnika: na przykład dyski SSD są znacznie droższe niż dyski twarde tej samej wielkości. Dlatego najlepiej bezpośrednio porównywać dyski tego samego typu. Jeśli chodzi o konkretne pojemności, najbardziej skromne wskaźniki są typowe dla konfiguracji z pamięcią półprzewodnikową - SSD tego lub innego typu lub eMMC (patrz „Rodzaj dysku”): wśród nich można znaleźć rozwiązania o pojemności 240 – 360 GB lub mniej. Pojemności dysków twardych zaczynają się od 480 – 512 GB; pojemność rzędu 1 TB można nazwać średnią, a najbardziej pojemne nowoczesne laptopy wyposażone są w pamięci masowe o pojemności 2 TB lub nawet więcej.

Interfejs dysku SSD M.2

Interfejs podłączenia, używany przez moduł SSD ze złączem M.2 zainstalowanym w laptopie (patrz „Typ dysku”).

Jedną z cech złącza M.2 i dysków z takim złączem jest to, że mogą korzystać z dwóch różnych interfejsów połączeniowych: PCI-E (w tej czy innej odmianie) lub SATA. Warto podkreślić, że ten punkt wskazuje dane modułu SSD; w samym złączu mogą być zapewnione inne opcje interfejsu, w tym bardziej zaawansowane - patrz „Interfejs łącza M.2” (na przykład dysk ze złączem PCI-E 3.0 można umieścić w gnieździe obsługującym również szybsze złącze PCI-E 4.0). Jednak w każdym przypadku złącze połączeniowe zwykle pozwala realizować wszystkie możliwości zainstalowanego dysku; więc ta pozycja pozwala dość rzetelnie ocenić możliwości standardowego modułu M.2.

Jeśli chodzi o konkretne interfejsy, obecnie można znaleźć głównie następujące warianty:

- SATA 3. Interfejs SATA został pierwotnie stworzony dla tradycyjnych dysków twardych. Trzecia wersja tego interfejsu jest najnowsza; zapewnia prędkość transmisji danych do 600 MB/s. To znacznie mniej niż ma PCI-E i ogólnie bardzo mało jak na standardy dysków SSD. Dlatego połączenie M.2 za pomocą SATA jest typowe głównie dla niedrogich modułów poziomu podstawowego. Jednak nawet takie nośniki są generalnie szybsze niż większość dysków twardych.

- PCI-E. Uniwersalny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Zapewnia g...eneralnie większe prędkości niż SATA, dzięki czemu lepiej nadaje się do modułów SSD: teoretycznie PCI-E pozwala dyskom SSD, nawet najszybszym, na osiągnięcie pełnego potencjału. W praktyce obsługiwana prędkość transmisji danych może być różna - w zależności od wersji interfejsu i liczby linii (kanałów transmisji danych). Oto warianty najbardziej odpowiednie dla współczesnych laptopów:
  • PCI-E 3.0 2x. Połączenie za pomocą 2 linii PCI-E w wersji 3.0. Ta wersja zapewnia prędkość około 1 GB/s na linię; w związku z tym obydwie linie dają maksymalnie nieco poniżej 2 GB/s.
  • PCI-E 3.0 4x. Połączenie za pomocą 4 linii PCI-E w wersji 3.0. Zapewnia maksymalną prędkość około 4 GB/s.
  • PCI-E 4.0 4x. Połączenie za pomocą 4 linii PCI-E w wersji 4.0. W tej wersji przepustowość w porównaniu do PCI-E 3.0 została podwojona - tym samym 4 linie dają maksymalną prędkość około 8 MB/s.
Warto zaznaczyć, że w przypadku złączy M.2 różne odmiany PCI-E są zwykle ze sobą dość kompatybilne - chyba że prędkość połączenia podczas pracy z obcym złączem będzie ograniczona możliwościami najwolniejszego komponentu. Na przykład podczas podłączenia modułu SSD PCI-E 3.0 4x do gniazda PCI-E 3.0 2x prędkość ta będzie odpowiadać możliwościom złącza, a podczas podłączenia do PCI-E 4.0 4x - możliwościom dysku.

Rozmiar dysku M.2

Rozmiar modułu SSD M.2 (patrz „Typ dysku") zainstalowanego w laptopie. Określony w formacie „szerokość x długość”.

Parametr ten przede wszystkim pozwala oszacować ilość miejsca wydzielonego na dysk oraz możliwość jego wymiany na moduł o innym rozmiarze. Warto tu zaznaczyć, że sam standard M.2 przewiduje kilka wariantów długości i szerokości, jednak najbardziej rozpowszechnione są płyty o szerokości 22 mm. Długość takiej płyty zwykle odpowiada jednej ze standardowych opcji: 30 mm, 42 mm, 60 mm, 80 mm i 110 mm.

Generalnie montaż krótszego modułu o tej samej szerokości (na przykład 22x42 mm zamiast 22x60 mm) nie sprawia problemów, jednak możliwość zastosowania większych komponentów należy wyjaśniać osobno - nie każda obudowa pozwala na montaż M. 2 dysków o długości większej niż ma moduł standardowy. Jeśli chodzi o konkretne rozmiary, najczęściej we współczesnych laptopach są dyski SSD M.2 22x80 mm: ten rozmiar gwarantuje wymianę dysku „natywnego” na prawie każdy moduł w standardzie 22 mm (z wyjątkiem największych, 22x110 mm - a nawet dla nich może być miejsce). Są też mniejsze rozmiary - 22x60 mm, 22x42 mm, a nawet 22x30 mm - jednak znacznie rzadziej. I tutaj warto powiedzieć, że im krótsza długość modułu SSD, tym z reguły mniejsza jego pojemność.

Należy zaznaczyć, że współczesne laptopy również używają modułów M.2 o innej szerokości - zwykle 16 mm o długości 20 mm (16x20 mm). Jest to jednak bardzo rzadki wariant.

Złącza

Złącza przewidziane w konstrukcji laptopa.

Ten punkt zawiera głównie dane dotyczące wyjść wideo: VGA, HDMI (wersje 1.4, 2.0, 2.1 i ich odmiany), miniHDMI, microHDMI, DisplayPort, miniDisplayPort). Ponadto mogą tutaj być wskazane inne typy złączy: audio S/P-DIF, serwisowy port COM. Ale informacje o takich interfejsach jak pełnowymiarowe USB, USB C, Thundebolt i LAN są podane w osobnych punktach (patrz niżej).

- VGA. Analogowe wyjście wideo, znane również jako gniazdo D-Sub 15 pin. Jest technicznie uważane za przestarzałe: ma niską odporność na zakłócenia, nie zapewnia transmisji dźwięku, a maksymalna obsługiwana rozdzielczość w praktyce nie przekracza 1280x1024. Niemniej jednak wejścia VGA są nadal dość powszechne w monitorach w dzisiejszych czasach i można je również znaleźć w innych rodzajach sprzętu wideo - w szczególności projektorach. Dlatego niektóre nowoczesne laptopy, głównie do celów multimedialnych, wyposażone są w podobne wyjścia - licząc na podłączenie do wspomnianych urządzeń wideo.

- HDMI. Najpopularniejszy współcześnie interfejs do pracy z treściami HD. Wykorzystuje cyfrową transmisję danych, umożliw...ia jednoczesną transmisję wideo w wysokiej rozdzielczości i wielokanałowego dźwięku jednym przewodem. Większość współczesnych monitorów, telewizorów, projektorów i innych urządzeń wideo obsługujących HD ma co najmniej jedno wejście HDMI; więc ten rodzaj wyjścia obecnie jest niezwykle powszechny w laptopach.

- microHDMI i miniHDMI. Zmniejszone wersje HDMI opisane powyżej: są całkowicie podobne pod względem funkcjonalności i różnią się jedynie wielkością złącza. Są instalowane głównie w najcieńszych i najbardziej kompaktowych laptopach, dla których pełnowymiarowe HDMI jest zbyt nieporęczne.

Porty HDMI i mini/microHDMI we współczesnych laptopach mogą odpowiadać różnym wersjom:
  • v 1.4. Najwcześniejszy z rozpowszechnionych standardów, wydany w 2009 roku. Umożliwia transmisję sygnału w rozdzielczości do 4096x2160 z prędkością 24 kl./s, a przy rozdzielczości Full HD liczba klatek może osiągnąć 120 kl./s; możliwa jest również transmisja wideo 3D.
  • v 1.4a. Pierwszy dodatek do wersji 1.4, który obejmował w szczególności dodanie dwóch dodatkowych formatów wideo 3D.
  • v 1.4b. Druga aktualizacja standardu HDMI 1.4, która wprowadziła jedynie drobne doprecyzowania i uzupełnienia specyfikacji v 1.4a.
  • v 2.0. Globalna aktualizacja HDMI wprowadzona w 2013 roku. Złącze znane również jako HDMI UHD, umożliwia strumieniowe przesyłanie wideo 4K z prędkością klatek do 60 kl./s. Liczba kanałów audio może osiągnąć 32, jednocześnie może być emitowanych do 4 strumieni audio. Ponadto wprowadzono obsługę proporcji 21:9 i niektóre ulepszenia treści 3D.
  • v 2.0a. Pierwsza aktualizacja HDMI 2.0. Kluczową innowacją jest kompatybilność z treścią HDR (patrz „Obsługa HDR”).
  • v 2.0b. Druga aktualizacja wersji 2.0. Kluczowe innowacje dotyczą głównie pracy z HDR - w szczególności dodano obsługę HDR10 i HLG.
  • v 2.1. Jedna z najnowszych wersji wydana jesienią 2017 roku. Dalszy wzrost przepustowości umożliwił obsługę wideo 4K, a nawet 8K przy częstotliwości odświeżania do 120 kl./s. Ponadto kluczowe ulepszenia obejmują rozszerzone możliwości pracy z HDR. Należy pamiętać, że do pełnego wykorzystania zalet HDMI v2.1 wymagane są kable HDMI Ultra High Speed, chociaż podstawowa funkcjonalność jest dostępna przy użyciu zwykłych kabli.
- DisplayPort. Cyfrowy port o dużej prędkości umożliwia przesyłanie tak wideo, jak i dźwięku w jakości HD. Bardzo podobny do HDMI, zapewnia większą prędkość przesyłania danych i pozwala na użycie dłuższych kabli, ale mniej powszechny, używany głównie w urządzeniach komputerowych.

- miniDisplayPort. Zmniejszona wersja DisplayPort opisanego powyżej, zaprojektowana w celu uczynienia złącza bardziej kompaktowym; poza wymiarami nie różni się od oryginalnego interfejsu. Jakiś czas temu było to standardowe złącze wideo do laptopów Apple; a nawet interfejs Thunderbolt, który je zastąpił, w wersjach 1 i 2 (patrz poniżej) wykorzystuje złącze identyczne ze złączem miniDisplayPort.

Zarówno pełnowymiarowy DisplayPort, jak i jego zmniejszona odmiana mogą należeć do różnych wersji. Najpopularniejsze dziś opcje to:
  • v 1.2. Najwcześniejsza z rozpowszechnionych w laptopach wersji, wydana w 2010 roku. Najważniejsze innowacje prezentowane w tej wersji to obsługa 3D, możliwość jednoczesnej pracy z kilkoma strumieniami wideo w celu szeregowego łączenia ekranów (daisy chain), a także możliwość pracy przez złącze miniDisplayPort. Przepustowość v 1.2 jest wystarczająca, aby w pełni obsługiwać wideo 5K przy 30 klatkach na sekundę i wideo 8K - z pewnymi ograniczeniami.
  • v 1.2a. Aktualizacja wersji 1.2, wydana w 2013. Jedną z najbardziej godnych uwagi innowacji jest możliwość pracy z AMD FreeSync (patrz wyżej). Przepustowość i obsługiwane rozdzielczości pozostały niezmienione.
  • v 1.3. Wersja DisplayPort wydana w 2014 roku. W porównaniu z poprzednią wersją przepustowość wzrosła 1,5 razy na linię i prawie 2 razy - ogólnie na złączu (odpowiednio 8,1 Gb/s i 32,4 Gb/s). Umożliwiło to między innymi zapewnienie pełnej obsługi wideo 8K przy 30 kl./s, a także zwiększenie maksymalnej liczby klatek na sekundę w standardach 4K i 5K do 120 i 60 kl./s odpowiednio. W trybie „daisy chain” standard ten pozwala na pracę z dwoma ekranami 4K UHD (3840x2160) przy częstotliwości odświeżania 60 Hz lub z czterema ekranami 2560x1600 przy tej samej częstotliwości. Ponadto w tej wersji wprowadzono obsługę trybu Dual-mode, co zapewnia kompatybilność z interfejsami HDMI i DVI poprzez najprostsze adaptery pasywne.
  • v 1.4. Wersja wprowadzona w marcu 2016 r. Przepustowość pozostaje niezmieniona w stosunku do poprzedniego standardu, ale dodano kilka ważnych funkcji - w szczególności obsługę Display Stream Compression 1.2, standardu HDR10 i Rec. 2020, a maksymalna liczba obsługiwanych kanałów audio wzrosła do 32.
  • v 1.4a. Aktualizacja wydana w 2018 roku „po cichu” - nawet bez oficjalnego komunikatu prasowego. Główną innowacją była aktualizacja technologii Display Stream Compression z wersji 1.2 do wersji 1.2a.


- S/P-DIF. Wyjście do transmisji dźwięku cyfrowego, w tym wielokanałowego. Ma dwa rodzaje - optyczny i elektryczny; pierwszy jest absolutnie niewrażliwy na zakłócenia, ale wykorzystuje raczej delikatne kable, drugi nie wymaga szczególnej ostrożności w obsłudze, ale może podlegać zakłóceniom (choć kable są zwykle ekranowane). Laptopy używają głównie optycznego S/P-DIF, a ze względu na kompaktowość, złącze to jest połączone z gniazdem mini-Jack do słuchawek. Jednak w każdym razie konkretne cechy tego interfejsu należy wyjaśniać osobno.

- Port COM. Uniwersalny interfejs do podłączania różnych urządzeń zewnętrznych, w szczególności modemów telefonicznych, jak również do bezpośredniego połączenia między dwoma komputerami. Znany również jako RS-232 (zgodnie z nazwą złącza). Obecnie jest uważany za przestarzały ze względu na rozpowszechnianie się bardziej kompaktowych, szybszych i bardziej funkcjonalnych interfejsów, głównie USB. Niemniej jednak wiele typów urządzeń, w tym specjalistycznych, wykorzystuje właśnie port COM jako interfejs sterujący. Do takich urządzeń należą zasilacze awaryjne, odbiorniki satelitarne i urządzenia komunikacyjne, systemy bezpieczeństwa i alarmowe itp. W związku z tym porty COM, chociaż prawie nigdy nie są używane w laptopach konsumenckich, nadal występują w niektórych specjalistycznych modelach.
Pixus LINK 15 często porównują