Polska
Katalog   /   Komputery   /   Podzespoły   /   Dyski twarde

Porównanie Seagate Exos X18 ST16000NM000J 16 TB
SATA
vs Toshiba MG08 MG08ACA16TE 16 TB
SATA 512e

Dodaj do porównania
Seagate Exos X18 ST16000NM000J 16 TB SATA
Toshiba MG08 MG08ACA16TE 16 TB SATA 512e
Seagate Exos X18 ST16000NM000J 16 TB
SATA
Toshiba MG08 MG08ACA16TE 16 TB
SATA 512e
Porównaj ceny 20Porównaj ceny 13
Opinie
1
0
0
1
0
0
1
0
TOP sprzedawcy
Korpus wypełniony helem.
Typ dyskuwewnętrznywewnętrzny
Rodzaj dyskuHDDHDD
Przeznaczeniedo serwerado serwera
Pojemność16000 GB16000 GB
Format3.5 "3.5 "
InterfejsSATA3SATA3
Helowy
Gwarancja producenta5 lat5 lat
Specyfikacja
Pojemność bufora512 MB
Sposób zapisuCMR
Prędkość obrotowa7200 obr./min7200 obr./min
Liczba talerzy9 szt.
Pobór mocy w trybie pracy7.63 W
Pobór mocy w trybie czuwania5.3 W4 W
Odporność na wstrząsy w trakcie pracy200 G
Średni czas bezawaryjnej pracy2.5 mln. godzin2.5 mln. godzin
Średni czas bezawaryjnej pracy600 tys. razy
Dane ogólne
Wymiary147x102x26 mm147x102x26 mm
Waga670 g720 g
Kolor obudowy
Data dodania do E-Katalogstyczeń 2021styczeń 2019
Glosariusz

Helowy

Dyski twarde, w których szczelne obudowy wypełnione są od wewnątrz helem.

Znaczenie tego „nadzienia” jest dwojakie. Po pierwsze, gęstość helu jest siedmiokrotnie mniejsza niż gęstość powietrza. W efekcie taki wypełniacz stwarza mniejsze opory przy obracaniu się talerzy, co ma pozytywny wpływ zarówno na efektywność energetyczną i odprowadzanie ciepła, jak i na prędkość dostępu do danych. Po drugie, hel jest gazem obojętnym, co oznacza, że nie oddziałuje chemicznie z wewnętrznymi częściami napędu, a prawdopodobieństwo korozji (w zasadzie i tak niskie) jest zredukowane do absolutnego minimum. Z drugiej strony produkcja dysków helowych to bardzo kosztowny proces. Dlatego większość z tych dysków to albo profesjonalne rozwiązania serwerowe, albo zaawansowane napędy do domowych komputerów PC odpowiedniego poziomu.

Pojemność bufora

Wielkość własnej pamięci RAM dysku twardego. Ta pamięć jest pośrednim ogniwem między szybką pamięcią o dostępie swobodnym komputera a stosunkowo powolną mechaniką odpowiedzialną za odczytywanie i zapisywanie informacji na talerzach dysków. W szczególności bufor służy do przechowywania najczęściej żądanych danych z dysku, skracając w ten sposób czas dostępu do nich.
Technicznie rzecz biorąc, rozmiar bufora wpływa na prędkość dysku twardego - im większy bufor, tym szybszy jest dysk. Jednak wpływ ten jest raczej znikomy, a na poziomie ludzkiej percepcji znaczna różnica w wydajności jest zauważalna tylko wtedy, gdy wielkość bufora obu dysków różni się wielokrotnie – na przykład 8 MB i 64 MB.

Sposób zapisu

- CMR (Conventional Magnetic Recording) to klasyczny sposób zapisu magnetycznego charakteryzujący się dużą prędkością dostępu do danych. Dyski twarde CMR są stosowane w systemach, w których ważne jest zapewnienie jak największej (jak to możliwe) prędkości odczytu/zapisu danych. Są to komputery użytkowników, systemy nadzoru wideo itp. Główną wadą dysków twardych CMR jest duża złożoność tworzenia pojemnych dysków, co znajduje odzwierciedlenie w ich cenie. Ponadto dyski HDD z technologią CMR są dość energochłonne.

- SMR (Shingled Magnetic Recording) to obiecujący sposób zapisu magnetycznego. SMR pozwala na wysoką gęstość danych, co z kolei zwiększa pojemność pamięci i obniża wartość rynkową. Dyski twarde SMR charakteryzują się niską prędkością ponownego zapisu danych, dlatego takie dyski pamięci są słabo przystosowane do użycia w systemach komputerowych klientów. Natomiast sprawdziły się dobrze podczas pracy w centrach przetwarzania danych, archiwach i podobnych systemach, dla których niska prędkość zapisu/ponownego zapisu nie jest krytyczna. Jednak niektóre firmy wciąż produkują rozwiązania SMR dla systemów osobistych, a nawet mobilnych. Te dyski twarde wykorzystują zoptymalizowaną technologię zapisu/ponownego zapisu o nazwie Drive-Managed SMR (DM-SMR).

Liczba talerzy

Liczba talerzy przewidzianych w konstrukcji dysku twardego.

Fizycznie dysk twardy składa się z jednego lub więcej talerzy, na których zapisywane są informacje. Może się zapewniać kilka talerzy w celu uzyskania pożądanej pojemności bez zwiększania współczynnika kształtu. Jednocześnie w takim napędzie musi być również zainstalowana odpowiednia liczba głowic odczytujących, co komplikuje konstrukcję, zmniejsza jego niezawodność i zwiększa jej koszt. Dlatego producenci dobierają liczbę talerzy opierając się na rozsądnym kompromisie między tymi punktami, a przy wyborze parametr ten jest bardziej referencyjnym niż praktycznym.

Pobór mocy w trybie pracy

Ilość energii zużywanej przez dysk podczas odczytywania i zapisywania informacji. W rzeczywistości jest to szczytowe pobór mocy, w tych trybach napęd zużywa najwięcej energii.

Dane dotyczące zużycia energii przez dysk twardy są potrzebne przede wszystkim do obliczenia całkowitego zużycia energii przez system i wymagań dotyczących zasilania. Ponadto w przypadku laptopów, które często planuje się używać „z dala od gniazdek”, warto wybrać bardziej energooszczędne dyski.

Pobór mocy w trybie czuwania

Ilość energii zużywanej przez dysk w stanie bezczynności. W stanie włączonym talerze dysków obracają się, niezależnie od tego, czy informacja jest zapisywana czy czytana, czy nie - na utrzymywanie tego obrotu zużywa się energia pobierana w trybie czuwania.

Im mniej energii zużywa się w trybie czuwania, tym oszczędniejszy jest dysk, tym mniej zużywa energii. Jednocześnie zauważamy, że w praktyce parametr ten ma znaczenie głównie przy wyborze dysku do laptopa, gdy decydujące znaczenie ma energooszczędność. W przypadku komputerów stacjonarnych „bezczynny” pobór mocy nie odgrywa szczególnej roli, a przy obliczaniu wymagań dotyczących zasilania należy wziąć pod uwagę nie wskaźnik ten, ale pobór mocy podczas pracy (patrz wyżej).

Odporność na wstrząsy w trakcie pracy

Parametr określający odporność dysku twardego na upadki i wstrząsy w trakcie pracy (czyli w stanie włączonym). Odporność na wstrząsy mierzona jest w G - jednostkach przeciążenia, 1 G odpowiada normalnej grawitacji. Im wyższa liczba G, tym dysk jest bardziej odporny na różnego rodzaju wstrząsy i tym mniej prawdopodobne jest, że ulegnie uszkodzeniu np. w przypadku upadku. Parametr ten jest szczególnie ważny w przypadku dysków zewnętrznych i dysków używanych w laptopach.

Średni czas bezawaryjnej pracy

Gwarantowana (minimalna) liczba cykli włączania i wyłączania dysku twardego, po których będzie on nadal działał. Im wyższa ta liczba, tym bardziej niezawodny dysk.
Dynamika cen
Toshiba MG08 często porównują