Komunikacja
Główny sposób łączenia gadżetu na rękę z urządzeniami zewnętrznymi. W przypadku smartwatchy i smartbandów (patrz „Rodzaj”) chodzi o połączenie ze smartfonem lub tabletem, a w przypadku smartwatchy z funkcją telefonu najczęściej chodzi o zestawy słuchawkowe.
— Bluetooth. Bezprzewodowa technologia do bezpośredniej komunikacji między różnymi urządzeniami. To najpopularniejszy interfejs w smartwatchach i smartbandach: moduły Bluetooth mogą być bardzo małe, zasięg komunikacji nawet w najwcześniejszych wersjach sięga 10 m, a różne generacje Bluetooth są ze sobą kompatybilne pod względem podstawowej funkcjonalności. W szczególności wersje w naszych czasach są następujące:
- v 2.0. Najwcześniejszy standard stosowany we współczesnych gadżetach do noszenia. Możliwości takiego połączenia są skromniejsze niż w bardziej zaawansowanych wersjach, ale często wystarczają, biorąc pod uwagę zakres zastosowania.
- v 3.0. Standard, który łączy w sobie klasyczny Bluetooth v 2.0 i szybki „dodatek” do przesyłania dużych ilości danych.
- v 4.0. Kolejne, po 3.0, ulepszenie Bluetooth: w tej wersji do klasycznego i szybkiego formatu została dodana technologia „Bluetooth o niskim zużyciu energii”. Wsparcie dla tej technologii jest szczególnie przydatne w bransoletkach fitness, które zwykle przesyłają niewielkie ilości danych, ale stale.
- v 4.1. Modyfikacja opisanego powyżej standardu 4.0 z ulepszoną ochroną przed...zakłóceniami podczas pracy z komunikacją mobilną LTE.
- v 4.2. Kolejne ulepszenie standardu 4.0, które wprowadziło w szczególności ulepszoną ochronę danych i zwiększoną prędkość połączenia.
- v 5. Piąta generacja Bluetooth została wydana w 2016 roku. Kluczową nowością w wersji 5.0 było rozszerzenie możliwości związanych z Internetem Rzeczy. Tak więc w protokole Bluetooth Low Energy możliwe stało się podwojenie prędkości przesyłania danych (do 2 Mb/s) kosztem zmniejszenia zasięgu, a także czterokrotne zwiększenie zasięgu kosztem zmniejszenia prędkości; ponadto wprowadzono szereg usprawnień dotyczących jednoczesnej pracy z dużą liczbą podłączonych urządzeń.
- — v 5.1. Aktualizacja wersji opisanej powyżej v 5.0. Oprócz ogólnej poprawy jakości i niezawodności komunikacji, w tej aktualizacji zaimplementowano tak ciekawą funkcję jak określanie kierunku, z którego dochodzi sygnał Bluetooth. Dzięki temu możliwe staje się określenie położenia podłączonych urządzeń z dokładnością do centymetra.
- — v 5.2. Kolejna, po 5.1, aktualizacja Bluetooth 5. generacji. Główne nowości w tej wersji to szereg ulepszeń bezpieczeństwa, dodatkowa optymalizacja mocy w trybie LE oraz nowy format sygnału audio do synchronizacji równoległego
odtwarzania na kilku urządzeniach.
- —v 5.3. Protokół bezprzewodowy Bluetooth v 5.3 został wprowadzony na początku 2022 roku. Wśród nowości przyspieszono w nim proces negocjacji kanału komunikacyjnego pomiędzy sterownikiem a urządzeniem, zaimplementowano funkcję szybkiego przełączania pomiędzy stanem pracy w małym cyklu roboczym a trybem high-speed, poprawiono przepustowość i stabilność połączenia poprzez zmniejszenie podatności na zakłócenia. W przypadku zaistnienia nieoczekiwanych zakłóceń w trybie pracy Low Energy przyśpieszono procedurę wyboru kanału komunikacyjnego do przełączenia. W protokole 5.3 nie zaprezentowano fundamentalnych nowości, lecz widać w nim szereg ulepszeń jakościowych.
Rzecz jasna, aby móc korzystać ze wszystkich funkcji danej wersji Bluetooth, musi być on obsługiwany nie tylko przez samo urządzenia, ale także przez smartfon/tablet, do którego jest podłączony.
Liczba trybów sportowych
Liczba rodzajów treningów sportowych obsługiwanych przez smartwatch. Im jest ich więcej, tym szerszy zasięg potencjalnej publiczności zapewnia się przez gadżet noszony na nadgarstku.
Najpopularniejsze tryby sportowe obejmują bieganie, spacery, jazdę na rowerze, pływanie, ćwiczenia na trenażerze eliptycznym i tak dalej. Ilość i jakość danych dla różnych dyscyplin sportowych zależy od poziomu technicznego wyposażenia konkretnego urządzenia. Podczas gdy niektóre modele rejestrują tylko tętno i z grubsza obliczają liczbę spalonych kalorii, inne smartwatche oceniają efektywność treningu na podstawie szczegółowej listy danych, a nawet rysują umowne ścieżki biegowe na podstawie informacji z satelitów GPS.
Tryb pływania
Program treningowy inteligentnych zegarków „wodopływających" lub bransoletek fitness przy udziale w dyscyplinach sportów wodnych. W
trybie pływania noszony gadżet określa prędkość, dystans i czas pływania, zaawansowane odmiany „inteligentnych” zegarków mierzą liczbę okrążeń w basenie, obliczają częstotliwość i efektywność poruszania się w określonych stylach pływania. Asystent personalny na nadgarstku ocenia wydajność treningów wodnych i często wydaje rekomendacje mające na celu poprawę ich efektywności.
Rodzaj matrycy
— TFT. Najprostszy rodzaj matryc ciekłokrystalicznych stosowanych w wyświetlaczach kolorowych. Zapewniają stosunkowo niską, ale generalnie wystarczającą jakość obrazu, a jednocześnie są znacznie tańsze niż bardziej zaawansowane technologie. Nie wymagają podświetlenie - a dokładniej, podświetlenie jest częścią samego ekranu i włącza się wraz z nim. Spośród jednoznacznych niedociągnięć warto zauważyć, że wiele
matryc TFT ma raczej ograniczone kąty widzenia; jednakże wraz z poprawą technologii ta wada jest stopniowo eliminowana.
— IPS. Rodzaj matryc ciekłokrystalicznych zaprojektowany w celu wyeliminowania wad TFT. Istnieje wiele podgatunków
matryc IPS, ale wszystkie wyróżniają się wysoką jakością odwzorowania barw, doskonałą jasnością i szerokimi kątami widzenia. Wadą tej opcji jest stosunkowo wysoki koszt.
—
OLED. W tym przypadku ma się na myśli technologię stosowaną przy tworzeniu najprostszych wyświetlaczy monochromatycznych. Na takich ekranach każdy segment składający się na obraz to osobna dioda LED, co eliminuje potrzebę zewnętrznego podświetlenia. Kolor poświaty w różnych modelach może być różny, co pozwala nadać gadżetowi stylowy i oryginalny wygląd.
—
AMOLED. Ekrany oparte na matrycy z aktywnych organicznych diod elektroluminescencyjnych. Podobnie jak w przypadku różnych typów TFT, technologia ta umożli
...wia tworzenie kolorowych wyświetlaczy o wysokiej rozdzielczości. Jego kluczową cechą jest to, że ekran nie wymaga osobnego systemu podświetlenie - w matrycach AMOLED każdy piksel świeci samodzielnie, przez co pobór prądu jest nieco niższy. Jednocześnie takie ekrany wyróżniają się dobrą jakością odwzorowania barw, doskonałą jasnością i szerokimi kątami widzenia, są jednak znacznie droższe od TFT.
— Super AMOLED. Ulepszona wersja opisanej powyżej technologii AMOLED, zapewniająca bogatsze odwzorowanie barw i jasność, a także lepszą dokładność i szybkość reakcji na dotyk - wszystko z cieńszym wyświetlaczem i mniejszym zużyciem energii. Dodatkowo zmniejsza się stopień odbijania światła zewnętrznego, taka matryca daje mniej olśnienia i jest lepiej widoczna w świetle słonecznym.
— E-Ink (E-Paper). Wyświetlacze wykonane w technologii papieru elektronicznego; ponadto w tej kategorii znajdują się również ekrany typu Memory LCD. Klasyczny ekran E-Ink jest czarno-biały, nie jest wyposażony w podświetlenie (jednak można je osobno wbudować w gadżet), ma bardzo niską częstotliwość odświeżania i słabo sprawdza się nawet do stoperów, nie wspominając o filmach czy animowanych obrazkach. Z drugiej strony „papier elektroniczny” jest doskonale widoczny w jasnym świetle i ma bardzo niski pobór mocy: potrzebuje prądu tylko przy zmianie obrazu, a nieruchomy obraz pozostaje widoczny nawet po całkowitym wyłączeniu zasilania. Z kolei ekrany Memory LCD o tych samych zaletach prawie nie ustępują klasycznym matrycom LCD pod względem częstotliwości odświeżania, ale z wielu powodów nie otrzymały zbyt dużego rozpowszechnienia.
— Transflective. Specyficzny rodzaj matrycy LCD, zdolny do działania zarówno z własnym podświetleniem, jak i światłem odbitym. W jasnym świetle zewnętrznym (na przykład w słońcu) taki ekran skutecznie je odbija i nie wymaga osobnego podświetlenie - jednak wciąż jest w konstrukcji i włącza się przy słabym oświetleniu. Taki format pracy pozwala znacznie zmniejszyć zużycie energii w porównaniu do tradycyjnych ekranów LCD, gdzie obraz nie jest widoczny bez podświetlenie; ponadto ważną zaletą jest również dobra widoczność w jasnym świetle. Główną wadą tego typu matrycy jest jej wysoki koszt; ponadto są one w większości wykonane w postaci monochromatycznej.
— LTPO. Matryce OLED i AMOLED z adaptacyjną częstotliwością odświeżania, która zmienia się w szerokim zakresie w zależności od wykonywanych zadań. Przy renderowaniu dynamicznych treści ekrany z technologią LTPO automatycznie podnoszą częstotliwość odświeżania do maksymalnych wartości, przy oglądaniu statycznych obrazów automatycznie redukują ją do minimum. Sercem tej technologii jest podłoże LTPS z cienką warstwą tlenkową TFT nad podstawą tranzystorów cienkowarstwowych. Dynamiczna kontrola częstotliwości odświeżania jest zapewniona dzięki sterowaniu przepływem elektronów. Kluczową zaletą ekranów LTPO jest zmniejszone zużycie energii.Przekątna
Przekątna wyświetlacza zainstalowanego w gadżecie; w przypadku ekranów okrągłych jest wskazywana średnica.
Większy ekran z jednej strony okazuje się wygodniejszy w użytkowaniu, z drugiej znacząco wpływa na wymiary całego urządzenia, co jest szczególnie istotne w przypadku gadżetów na nadgarstek. Dlatego producenci wybierają rozmiar wyświetlacza zgodnie z przeznaczeniem i funkcjonalnością każdego konkretnego modelu - tak, aby na ekranie było wystarczająco dużo miejsca, a samo urządzenie nie było zbyt nieporęczne.
Warto też wspomnieć, że ekrany o podobnej przekątnej mogą mieć różne proporcje. Na przykład tradycyjne smartwatche są zwykle wyposażone w kwadratowe lub okrągłe matryce, podczas gdy w smartbandach (bransoletkach fitness) ekrany są często wydłużane.
Rozdzielczość ekranu
Rozmiar ekranu zegara w liniach (pikselach) w poziomie i w pionie. Generalnie jest to jeden ze wskaźników określających jakość obrazu: im wyższa rozdzielczość, tym wyraźniejszy i gładszy obraz na ekranie (przy tej samej przekątnej), tym mniej zauważalne są pojedyncze piksele. Z drugiej strony wzrost liczby pikseli wpływa na koszt wyświetlaczy, ich pobór mocy i wymagania stawiane platformie sprzętowej (wymagane jest mocniejsze „wypełnienie”, które samo w sobie będzie kosztować więcej). Ponadto specyfika korzystania z inteligentnych zegarków jest taka, że po prostu nie ma potrzeby instalowania w nich „fantazyjnych” ekranów o wysokiej rozdzielczości. Dlatego współczesne akcesoria na rękę wykorzystują wyświetlacze o stosunkowo niskiej rozdzielczości: na przykład 320x320 o przekątnej około 1,6 cala jest uważana za wystarczającą nawet w przypadku zegarków klasy premium.
PPI
Gęstość punktów na ekranie gadżetu, czyli liczba pikseli na cal matrycy w pionie lub poziomie.
Im wyższy PPI, tym wyższa szczegółowość ekranu, tym wyraźniejszy i gładszy obraz. Wskaźnik ten jednak ma odpowiedni wpływ na cenę. Dlatego im większa gęstość punktów, tym bardziej zaawansowany jest z reguły ten gadżet pod względem ogólnych możliwości. Jednak przy wyborze ekranu producenci biorą pod uwagę ogólny cel i funkcjonalność urządzenia; więc nawet niewielka liczba PPI zwykle nie przeszkadza w wygodnym użytkowaniu.
Jasność
Maksymalna jasność w nitach, jaką generuje ekran urządzenia.
Wyświetlacze o wysokiej jasności pozostają czytelne w intensywnym świetle otoczenia, co jest ważne dla szybkiego wyszukiwania informacji z tarczy na zewnątrz w pogodny, słoneczny dzień. Jednak duży margines tego parametru wpływa na koszt i pobór mocy wyświetlacza, co zmniejsza żywotność baterii urządzenia do noszenia.
Bezramkowy
Bezramkowymi (bezel-less) są wyświetlacze, w których obudowa lub bezel nie zajmują powierzchni użytkowej panelu przedniego lub jest ona zminimalizowana. Pod względem wzornictwa, bezel i ramki mają zarówno zalety, jak i wady. Jednym z najważniejszych powodów dodania znaczących ramek do ekranu jest ochrona fizyczna.
Bezramkowy wyświetlacz bardzo łatwo porysować lub uszkodzić przy upuszczeniu. Z drugiej strony ramka zajmuje miejsce na ekranie i jest to jeden z powodów, dla których ramki we współczesnych smartwatchach są zminimalizowane, dzięki czemu gadżet jest bardziej kompaktowy i stylowy.