Min. prędkość obrotowa
Najniższa prędkość, przy której może działać wentylator chłodzący. Jest wskazywana tylko dla modeli z regulatorem prędkości (patrz poniżej).
Im niższa prędkość minimalna (przy tym samym maksimum) - tym szerszy jest zakres regulacji prędkości i tym bardziej możesz spowolnić wentylator, gdy duża wydajność nie jest potrzebna (takie spowolnienie pozwala zmniejszyć zużycie energii i poziom hałasu). Z drugiej strony szeroki zakres ma odpowiedni wpływ na koszt.
Maks. prędkość obrotowa
Najwyższa prędkość obrotowa jaką obsługuje wentylator układu chłodzenia; w przypadku modeli bez regulatora prędkości (patrz poniżej), podawana jest prędkość nominalna. W „najwolniejszych” współczesnych wentylatorach maksymalna prędkość
nie przekracza 1000 obr./min, w „najszybszych” może to być
do 2500 obr./min, a nawet
więcej.
Należy pamiętać, że parametr ten jest ściśle powiązany ze średnicą wentylatora (patrz wyżej): im mniejsza średnica, tym wyższe muszą być obroty, aby osiągnąć żądane wartości przepływu powietrza. W takim przypadku prędkość obrotowa wpływa bezpośrednio na poziom hałasu i wibracji. Dlatego uważa się, że najlepiej jest zapewnić wymaganą objętość powietrza dużymi i stosunkowo „wolnymi” wentylatorami; a stosowanie „szybkich” małych modeli ma sens w przypadku, gdy kompaktowość ma kluczowe znaczenie. Przy porównaniu prędkości modeli tej samej wielkości - wyższe obroty mają pozytywny wpływ na wydajność, lecz zwiększają nie tylko poziom hałasu, ale także wzrost ceny i zużycia energii.
Maks. przepływ powietrza
Maksymalny przepływ powietrza, jaki może wytworzyć wentylator chłodzący; jest mierzony w CFM - stopach sześciennych na minutę.
Im wyższy liczba CFM, tym wydajniejszy jest wentylator. Z drugiej strony wysoka wydajność wymaga albo dużej średnicy (co wpływa na rozmiar i koszt) albo dużej prędkości (co zwiększa hałas i wibracje). Dlatego przy wyborze warto nie gonić za maksymalnym przepływem powietrza, lecz stosować specjalne formuły, które pozwalają obliczyć wymaganą liczbę CFM w zależności od rodzaju i mocy chłodzonego elementu oraz innych parametrów. Takie formuły można znaleźć w specjalnych źródłach. Jeśli chodzi o konkretne liczby, to w najskromniejszych systemach wydajność
nie przekracza 30 CFM, a w najmocniejszych systemach może to być nawet 80 CFM, a nawet
więcej.
Należy również pamiętać, że rzeczywista wartość przepływu powietrza przy największej prędkości jest zwykle niższa od deklarowanego maksimum; patrz "Ciśnienie statyczne", aby uzyskać szczegółowe informacje.
Ciśnienie statyczne
Maksymalne statyczne ciśnienie powietrza generowane przez wentylator podczas pracy.
Parametr ten mierzony jest w następujący sposób: jeżeli wentylator jest zainstalowany na rurze zaślepionej, z której nie ma wylotu powietrza, i ustawiony do nadmuchu, to ciśnienie osiągane w rurze będzie odpowiadało ciśnieniu statycznemu. W praktyce parametr ten określa całkowitą sprawność wentylatora: im wyższe ciśnienie statyczne (pozostałe parametry są takie same), tym łatwiej wentylatorowi „przepychać” wymaganą ilość powietrza przez przestrzeń o dużym oporze, np. przez wąskie szczeliny radiatora lub przez obudowę wypełnioną podzespołami.
Parametr ten również jest używany w niektórych specyficznych obliczeniach, jednak obliczenia te są dość skomplikowane i zwykły użytkownik z reguły nie jest potrzebny - są one związane z kwestiami, które są istotne głównie dla entuzjastów komputerowych. Więcej na ten temat można przeczytać w specjalnych źródłach.
Min. poziom hałasu
Najniższy poziom hałasu wytwarzany przez układ chłodzenia podczas pracy.
Parametr ten jest wskazywany tylko dla tych modeli, które mają regulację wydajności i mogą pracować ze zmniejszoną mocą. W związku z tym minimalny poziom hałasu to poziom hałasu w trybie „najcichszym”, deklarowana głośność pracy, która w danym modelu nie może być mniejsza.
Dane te przydadzą się przede wszystkim tym, którzy starają się maksymalnie zmniejszyć poziom hałasu i, co jest nazywane, „walką o każdy decybel”. Należy tu jednak zaznaczyć, że w wielu modelach wartości minimalne wynoszą około 15 dB, a w tych najcichszych – tylko 10 – 11 dB. Ta głośność jest porównywalna do szelestu liści i prawie jest niesłyszalna na tle hałasu otoczenia nawet w pomieszczeniu mieszkalnym w nocy, nie mówiąc już o głośniejszych warunkach, a różnica między 11 a 18 dB w tym przypadku nie jest w żaden sposób znacząca dla ludzkiej percepcji. Tabela porównawcza dla dźwięku zaczynającego się od 20 dB jest podana w sekcji "Poziom hałasu" poniżej.
Poziom hałasu
Standardowy poziom hałasu w układzie chłodzenia podczas pracy. Zazwyczaj w tym punkcie wskazywany jest maksymalny hałas podczas normalnej pracy, bez przeciążeń i innych „ekstremalnych” sytuacji.
Należy zaznaczyć, że poziom hałasu jest podawany w decybelach i jest to wielkość nieliniowa. Tak więc, najłatwiejszym sposobem oszacowania rzeczywistej głośności jest skorzystanie z tabel porównawczych. Oto tabela wartości występujących we współczesnych układach chłodzenia:
20 dB - ledwo słyszalny dźwięk (cichy szept osoby w odległości około 1 m, tło dźwiękowe na otwartym polu poza miastem przy spokojnej pogodzie);
25 dB - bardzo cicho (zwykły szept w odległości 1 m);
30 dB - cichy (zegar ścienny). To właśnie taki hałas zgodnie z normami sanitarnymi jest maksymalnym dopuszczalnym dla stałych źródeł dźwięku w nocy (od 23.00 do 7.00). Oznacza to, że jeśli komputer jest używany w nocy, pożądane jest, aby głośność układu chłodzenia nie przekraczała tej wartości.
35 dB - rozmowa półgłosem, tło dźwiękowe w cichej bibliotece;
40 dB - stosunkowo cicha rozmowa, lecz już pełnym głosem. Maksymalny dopuszczalny poziom hałasu w dzień zgodnie z normami sanitarnymi dla pomieszczeń mieszkalnych, od 7.00 do 23.00. Jednak nawet najgłośniejsze układy chłodzenia zwykle nie osiągają tej wartości, maksimum dla takiego sprzętu wynosi około 38 - 39 dB.
Miejsce na pamięć RAM
Wysokość przestrzeni na RAM (pamięć o dostępie swobodnym), przewidzianej przez konstrukcję układu chłodzenia.
Taka przestrzeń występuje głównie w systemach procesorowych (patrz „Przeznaczenie”). Nowoczesne chłodnice CPU mogą być bardzo duże i po zainstalowaniu często blokują gniazda na kości pamięci RAM znajdujące się najbliżej procesora. Można tego uniknąć, odpowiednio zawężając konstrukcję - to z kolei negatywnie wpływa na wydajność. Dlatego wielu producentów korzysta z innego wariantu - nie ograniczają szerokości chłodnicy, lecz umieszczają jej elementy na dużej wysokości, umożliwiając umieszczenie pod nimi kości RAM o określonej wysokości. Czasami w dolnej części radiatora wykonuje się nawet specjalne wycięcie, co dodatkowo zwiększa dostępną przestrzeń. W tym punkcie wskazano maksymalną wysokość kości, którą można umieścić pod układem chłodzenia.
Socket
Rodzaj gniazda - złącza procesora - z którym kompatybilny jest odpowiedni system chłodzenia.
Różne gniazda różnią się nie tylko kompatybilnością z jednym lub drugim procesorem, lecz także konfiguracją gniazda dla systemu chłodzenia. Kupując układ chłodzenia procesora oddzielnie, upewnij się, że jest on kompatybilny ze złączem. Obecnie produkowane są rozwiązania głównie dla następujących typów gniazd:
AMD AM2/AM3/FM1/FM2,
AMD AM4,
AMD AM5,
AMD TR4/TRX4,
Intel 775,
Intel 1150,
Intel 1155/1156,
Intel 1366,
Intel 2011/2011 v3 ,
Intel 2066,
Intel 1151/1151 v2,
Intel 1200,
Intel 1700.
Wymiary
Wymiary układu chłodzenia. W przypadku układów wodnych (patrz „Rodzaj”) w tym punkcie podawany jest rozmiar zewnętrznego radiatora (wymiary bloku wodnego w takich urządzeniach są niewielkie i nie ma potrzeby ich szczególnego podawania).
Ogólnie jest to dość oczywisty parametr. Zauważamy tylko, że grubość ma szczególne znaczenie dla wentylatorów obudowy (patrz tamże) - to od niej zależy, ile miejsca urządzenie zajmie wewnątrz obudowy. Przy tym
wentylatory z cienką obudową zwyczajowo zaliczane są do modeli, w których rozmiar ten nie przekracza 20 mm.