Tryb nocny
Polska
Katalog   /   Komputery   /   Sprzęt sieciowy   /   Urządzenia sieciowe

Porównanie Xiaomi Router AX3200 vs TP-LINK Archer AX53

Dodaj do porównania
Xiaomi Router AX3200
TP-LINK Archer AX53
Xiaomi Router AX3200TP-LINK Archer AX53
Porównaj ceny 25Porównaj ceny 26
TOP sprzedawcy
Główne
Obsługa technologii MU-MIMO, OFDMA i Beamforming. Pełnowartościowa praca z sieciami MESH. sześć anten.
Obsługuje technologie MU-MIMO, OFDMA i Beamforming. Pełna praca z sieciami MESH.
Rodzaj urządzeniarouterrouter
Wejście danych (port WAN)
Ethernet (RJ45)
Wi-Fi
Ethernet (RJ45)
Wi-Fi
Połączenie Wi-Fi
Standardy Wi-Fi
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 6 (802.11ax)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 6 (802.11ax)
Zakres częstotliwości pracy
2.4 GHz
5 GHz
2.4 GHz
5 GHz
Pasma pracydwuzakresowy (2,4 GHz i 5 GHz)dwuzakresowy (2,4 GHz i 5 GHz)
Maks. prędkość przy 2.4 GHz800 Mb/s574 Mb/s
Maks. prędkość przy 5 GHz2402 Mb/s2402 Mb/s
Szerokość kanału80 MHz160 MHz
Porty
WAN
1 port
1 Gb/s
1 port
1 Gb/s
LAN
3 porty
1 Gb/s
4 porty
1 Gb/s
Antena i nadajnik
Liczba anten Wi-Fi6 szt.4 szt.
Typ antenyzewnętrznazewnętrzna
MU-MIMO
Liczba anten 2.4 GHz2 szt.
Liczba anten 5 GHz2 szt.
Liczba anten na 2.4 / 5 GHz2 szt.
Moc nadajnika20 dBm
Część sprzętowa
ProcesorMediaTek Filogic800
Liczba rdzeni procesora22
Częstotliwość taktowania1.35 GHz
Pamięć RAM256 MB
Funkcje
Funkcje i możliwości
NAT
repeater
tryb MESH
Beamforming
zapora sieciowa (Firewall)
NAT
 
tryb MESH
Beamforming
zapora sieciowa (Firewall)
Cechy dodatkowe
serwer DHCP
obsługa VPN
obsługa DDNS
obsługa DMZ
serwer DHCP
obsługa VPN
obsługa DDNS
obsługa DMZ
Bezpieczeństwo
Szyfrowanie
WPA
WEP
WPA2
WPA3
 
WPA
WEP
WPA2
WPA3
802.1x
Dane ogólne
Temperatura pracy0 °C ~ +40 °C0 °C ~ +40 °C
Wymiary284x186x186 mm260x135x42 mm
Kolor obudowy
Data dodania do E-Kataloglipiec 2022styczeń 2022

Maks. prędkość przy 2.4 GHz

Maksymalna prędkość zapewniana przez urządzenie przy łączności bezprzewodowej w paśmie 2.4 GHz.

Pasmo to jest wykorzystywane w większości współczesnych standardów Wi-Fi (patrz wyżej) - jako jedno najbardziej z dostępnych lub wręcz jedyne. Teoretyczne maksimum to 600 MB/s. W rzeczywistości Wi-Fi na częstotliwości 2.4 GHz jest wykorzystywane przez dużą liczbę urządzeń klienckich, z czego wynika przeciążenie kanałów transmisji danych. Ponadto liczba anten wpływa na wydajność prędkości sprzętu. Podaną w specyfikacji prędkość można osiągnąć tylko w warunkach idealnych. W praktyce może być ona zauważalnie mniejsza (często kilkukrotnie), zwłaszcza przy obfitości urządzeń bezprzewodowych podłączonych do sprzętu. Dla zrozumienia rzeczywistych możliwości sprzętu Wi-Fi maksymalna prędkość na 2.4 GHz jest podawana w specyfikacji poszczególnych modeli. Jeśli chodzi o liczby, to ze względu na możliwości w paśmie 2.4 GHz współczesny sprzęt umownie dzieli się na modele o prędkościach do 500 MB/s włącznie i powyżej 500 MB/s.

Szerokość kanału

160 MHz. Kanał 160 MHz zwiększa przepustowość transmisji danych i pozwala na jej zbliżenie do maksymalnej teoretycznej prędkości.

320 MHz. Kanał 320 MHz został wprowadzony w standardzie Wi-Fi 7 (patrz odpowiedni punkt). Zapewnia znaczny wzrost prędkości transmisji danych — dwukrotnie większy w stosunku do kanału 160 MHz.

LAN

LAN w tym przypadku oznacza standardowe złącza sieciowe (znane jako RJ-45) przeznaczone do przewodowego połączenia lokalnych urządzeń sieciowych – komputerów, serwerów, dodatkowych punktów dostępowych itp. Liczba portów odpowiada liczbie urządzeń, do których można bezpośrednio podłączyć sprzęt drogą przewodową.

Pod względem prędkości zdecydowanie najpopularniejsze opcje to 100 Mb/s (Fast Ethernet) i 1 Gb/s (Gigabit Ethernet). Jednocześnie dzięki rozwojowi technologii powstaje coraz więcej urządzeń gigabitowych, choć w praktyce prędkość ta ma krytyczne znaczenie tylko przy przesyłaniu dużej ilości informacji. Jednocześnie niektóre modele, oprócz standardowej szybkości głównych portów LAN, mogą posiadać port LAN 2,5 Gb/s, 5 Gb/s, a nawet 10 Gb/s przy zwiększonej przepustowości.

Liczba anten Wi-Fi

We współczesnym sprzęcie Wi-Fi wskaźnik ten może być różny: oprócz najprostszych urządzeń z 1 anteną, istnieją modele, w których liczba ta wynosi 2, 3, 4, a nawet więcej. Sens stosowania kilku anten tkwi w dwóch szczegółach. Po pierwsze, jeśli na antenę przypada kilka urządzeń zewnętrznych, muszą one dzielić między sobą szerokość pasma, a rzeczywista prędkość łączności dla każdego abonenta odpowiednio spada. Po drugie, taka konstrukcja może być również wymagana przy komunikacji z jednym urządzeniem zewnętrznym - do współpracy z technologią MU-MIMO (patrz poniżej), co pozwala w pełni wykorzystać możliwości nowoczesnych standardów Wi-Fi.

W każdym razie więcej anten oznacza zwykle bardziej zaawansowane i funkcjonalne urządzenie. Z drugiej strony, parametr ten znacząco wpływa na koszt; dlatego sensowne jest poszukiwanie sprzętu z dużą liczbą anten, głównie wtedy, gdy krytyczna jest szybkość i stabilność łączności.

Liczba anten 2.4 GHz

Łączna liczba anten w routerze odpowiedzialnych za komunikację w paśmie 2,4 GHz. Aby uzyskać więcej informacji na temat liczby anten, patrz „Łączna liczba anten”, zasięgu - „Zakres częstotliwości”.

Liczba anten 5 GHz

Łączna liczba anten w routerze odpowiedzialnych za komunikację w paśmie 5 GHz. Aby uzyskać więcej informacji na temat liczby anten, patrz „Łączna liczba anten”, o paśmie - „Pasmo częstotliwości”.

Liczba anten na 2.4 / 5 GHz

Całkowita liczba anten w routerze, które mogą działać zarówno na częstotliwościach 5 GHz, jak i 2,4 GHz. Aby uzyskać szczegółowe informacje na temat liczby anten, zobacz „Łącznie anten”, o zasięgu - „Zakres częstotliwości”.

Moc nadajnika

Nominalna moc nadajnika Wi-Fi zastosowanego w urządzeniu. Gdy obsługiwanych jest wiele zakresów (patrz „Zakresy pracy”), moc dla różnych częstotliwości może być różna, w takich przypadkach maksymalna wartość jest podana w tym miejscu.

Całkowita moc nadawcza zapewniana przez urządzenie zależy bezpośrednio od tego parametru. Moc tę można obliczyć dodając moc nadajnika i zysk energetyczny anteny (patrz wyżej): na przykład nadajnik 20 dBm uzupełniony o antenę 5 dBi daje moc 25 dBm (w głównym obszarze zasięgu anteny). Do prostego użytku domowego (na przykład zakup routera do małego mieszkania) takie szczegóły nie są wymagane, ale w dziedzinie zawodowej często konieczne jest użycie urządzeń bezprzewodowych o ściśle określonej mocy. Szczegółowe zalecenia w tej sprawie dla różnych sytuacji można znaleźć w źródłach specjalnych, ale tutaj zauważamy, że łączna wartość 26 dBm lub więcej pozwala zaklasyfikować urządzenie jako sprzęt z silnym nadajnikiem. Jednocześnie takie możliwości nie zawsze są wymagane w praktyce: nadmierna moc może powodować duże zakłócenia zarówno dla otaczających urządzeń, jak i samego nadajnika (szczególnie w warunkach miejskich i innych podobnych warunkach), a także obniżyć jakość połączenia z elektroniką małej mocy. A dla efektywnej komunikacji na duże odległości zarówno sam sprzęt, jak i urządzenia zewnętrzne powinny mieć odpowiednią moc (która nie zawsze jest osiągalna), dlatego przy wyborze nie należy gonić za maks...ymalną liczbą decybeli, ale wziąć pod uwagę zalecenia dla konkretnego przypadku; ponadto wzmacniacz Wi-Fi lub system MESH jest często dobrą alternatywą dla potężnego nadajnika.

Procesor

Model procesora zainstalowanego w urządzeniu. Procesor odpowiada za przetwarzanie ruchu sieciowego i uruchamianie oprogramowania. Znając jego nazwę, można uzyskać bardziej szczegółowe dane na temat prędkości sprzętu i zrozumieć, jak mocny lub wręcz przeciwnie, przeciętny procesor jest potrzebny. W nowych modelach sprzętu Wi-Fi często instalowane są koprocesory lub tzw. moduły NPU, które odciążają procesor główny.

Najczęściej sprzęt Wi-Fi wyposażony jest w procesory firm Broadcom, MediaTek, Realtek oraz Qualcomm.
Dynamika cen
Xiaomi Router AX3200 często porównują
TP-LINK Archer AX53 często porównują