Helowy
Dyski twarde, w których szczelne obudowy wypełnione są od wewnątrz helem.
Znaczenie tego „nadzienia” jest dwojakie. Po pierwsze, gęstość helu jest siedmiokrotnie mniejsza niż gęstość powietrza. W efekcie taki wypełniacz stwarza mniejsze opory przy obracaniu się talerzy, co ma pozytywny wpływ zarówno na efektywność energetyczną i odprowadzanie ciepła, jak i na prędkość dostępu do danych. Po drugie, hel jest gazem obojętnym, co oznacza, że nie oddziałuje chemicznie z wewnętrznymi częściami napędu, a prawdopodobieństwo korozji (w zasadzie i tak niskie) jest zredukowane do absolutnego minimum. Z drugiej strony produkcja
dysków helowych to bardzo kosztowny proces. Dlatego większość z tych dysków to albo profesjonalne rozwiązania serwerowe, albo zaawansowane napędy do domowych komputerów PC odpowiedniego poziomu.
Liczba talerzy
Liczba talerzy przewidzianych w konstrukcji dysku twardego.
Fizycznie dysk twardy składa się z jednego lub więcej talerzy, na których zapisywane są informacje. Może się zapewniać kilka talerzy w celu uzyskania pożądanej pojemności bez zwiększania współczynnika kształtu. Jednocześnie w takim napędzie musi być również zainstalowana odpowiednia liczba głowic odczytujących, co komplikuje konstrukcję, zmniejsza jego niezawodność i zwiększa jej koszt. Dlatego producenci dobierają liczbę talerzy opierając się na rozsądnym kompromisie między tymi punktami, a przy wyborze parametr ten jest bardziej referencyjnym niż praktycznym.
Pobór mocy w trybie pracy
Ilość energii zużywanej przez dysk podczas odczytywania i zapisywania informacji. W rzeczywistości jest to szczytowe pobór mocy, w tych trybach napęd zużywa najwięcej energii.
Dane dotyczące zużycia energii przez dysk twardy są potrzebne przede wszystkim do obliczenia całkowitego zużycia energii przez system i wymagań dotyczących zasilania. Ponadto w przypadku laptopów, które często planuje się używać „z dala od gniazdek”, warto wybrać bardziej energooszczędne dyski.
Pobór mocy w trybie czuwania
Ilość energii zużywanej przez dysk w stanie bezczynności. W stanie włączonym talerze dysków obracają się, niezależnie od tego, czy informacja jest zapisywana czy czytana, czy nie - na utrzymywanie tego obrotu zużywa się energia pobierana w trybie czuwania.
Im mniej energii zużywa się w trybie czuwania, tym oszczędniejszy jest dysk, tym mniej zużywa energii. Jednocześnie zauważamy, że w praktyce parametr ten ma znaczenie głównie przy wyborze dysku do laptopa, gdy decydujące znaczenie ma energooszczędność. W przypadku komputerów stacjonarnych „bezczynny” pobór mocy nie odgrywa szczególnej roli, a przy obliczaniu wymagań dotyczących zasilania należy wziąć pod uwagę nie wskaźnik ten, ale pobór mocy podczas pracy (patrz wyżej).
Odporność na wstrząsy w trakcie pracy
Parametr określający odporność dysku twardego na upadki i wstrząsy w trakcie pracy (czyli w stanie włączonym). Odporność na wstrząsy mierzona jest w G - jednostkach przeciążenia, 1 G odpowiada normalnej grawitacji. Im wyższa liczba G, tym dysk jest bardziej odporny na różnego rodzaju wstrząsy i tym mniej prawdopodobne jest, że ulegnie uszkodzeniu np. w przypadku upadku. Parametr ten jest szczególnie ważny w przypadku dysków zewnętrznych i dysków używanych w laptopach.
Średni czas bezawaryjnej pracy
MTBF to gwarantowany (minimalny) czas bezawaryjnej pracy dysku twardego. Im dłuższy MTBF, tym trwalsze i bardziej niezawodne urządzenie. Jednocześnie zauważamy, że po tym czasie dysk niekoniecznie od razu ulega awarii - większość modeli działa nawet po wyczerpaniu deklarowanych zasobów, ale producent nie daje tutaj żadnych gwarancji.
Średni czas bezawaryjnej pracy
Gwarantowana (minimalna) liczba cykli włączania i wyłączania dysku twardego, po których będzie on nadal działał. Im wyższa ta liczba, tym bardziej niezawodny dysk.