Pojemność pamięci
Wielkość własnej pamięci GPU; to właśnie parametr ten jest czasami nazywany pojemnością pamięci karty graficznej. Im więcej pamięci ma procesor graficzny, tym bardziej złożony i szczegółowy obraz może przetwarzać w pewnym okresie czasu, a odpowiednio, tym wyższa jego wydajność i szybkość (co jest szczególnie ważne w przypadku zadań wymagających dużej ilości zasobów, takich jak wymagające gry, edycja wideo, renderowanie 3D itp.).
Przy wyborze należy pamiętać, że na wydajność karty graficznej wpływa nie tylko ilość pamięci, lecz także jej typ, częstotliwość pracy (patrz poniżej) i inne cechy. Dlatego jest całkiem możliwe, że model z mniejszą ilością pamięci będzie bardziej zaawansowany i droższy niż ten z większą. Co więcej, można porównać ze sobą tylko warianty, które mają podobną resztę specyfikacji pamięci.
Na współczesnym rynku dostępne są głównie karty graficzne o wielkości pamięci
1 GB,
2 GB,
3 GB,
4 GB,
6 GB,
8 GB,
10 GB,
11 GB,
12 GB, a w najbardziej zaawansowanych modelach
16 GB, a nawet
więcej.
Częstotliwość GPU
Częstotliwość pracy procesora graficznego karty graficznej. Z reguły im wyższa częstotliwość GPU, tym wyższa wydajność karty graficznej, ale parametr ten nie jest jedyny - wiele zależy również od cech konstrukcyjnych karty graficznej, w szczególności od rodzaju i ilości pamięci graficznej (patrz odpowiednie punkty słownika). W konsekwencji nierzadko zdarza się, że spośród dwóch kart graficznych model o niższej częstotliwości CPU może być bardziej wydajny. Ponadto warto zauważyć, że procesory o wysokiej częstotliwości mają również wysokie wydzielanie ciepła, co wymaga zastosowania wydajnych systemów chłodzenia.
Wersja HDMI
Wersja interfejsu HDMI obsługiwana przez kartę graficzną. Więcej informacji na temat samego HDMI znajduje się powyżej, a jego wersje mogą być następujące:
- v.1.4. Najwcześniejszy standard HDMI występujący w kartach graficznych; został przedstawiony w 2009 roku. Pomimo swojego "szanowanego wieku" ma dobre cechy: obsługuje wideo 4K (4096x2160) z szybkością 24 kl./s, Full HD (1920x1080) z szybkością do 120 kl./s, a także nadaje się do przesyłania wideo 3D.
- v 1.4b. Drugie usprawnienie v.1.4 opisane powyżej. Pierwsza aktualizacja, v.1.4a, wprowadziła obsługę dwóch dodatkowych formatów wideo 3D; a w HDMI v.1.4b zaimplementowano głównie drobne ulepszenia i dodatki do specyfikacji v 1.4a, prawie niezauważalne dla zwykłego użytkownika.
- v 2.0. Standard przedstawiony w 2013 roku w celu zastąpienia HDMI v.1.4. Dzięki pełnej obsłudze 4K (do 60 kl./s) jest również znany jako HDMI UHD. Ponadto przepustowość wystarcza na jednoczesną transmisję do 32 ścieżek audio i do 4 osobnych strumieni audio, a lista obsługiwanych formatów ramek została uzupełniona o ultraszeroki 21:9.
- v 2.0b. Druga aktualizacja do opisanego powyżej standardu HDMI 2.0, charakteryzująca się przede wszystkim obsługą HDR. Jednak sama kompatybilność HDR pojawiła się w pierwszej aktualizacji, v.2.0a; a w wersji 2.0b dodano możliwość pracy ze standardami HDR10 i HLG.
- v.2.1. Najnowszy z powszechnych standardów HDMI, wydany w 2017 roku. Możliwość zapewnienia szybko...ści klatek 120 kl./s w sygnałach wideo o ultrawysokiej rozdzielczości — od 4K do 8K włącznie; pojawiły się również pewne ulepszenia związane z aplikacją HDR. Należy pamiętać, że wszystkie funkcje HDMI v.2.1 są dostępne tylko podczas korzystania z kabli Ultra High Speed, chociaż podstawowe funkcje działają za pośrednictwem zwykłych kabli.
Liczba wentylatorów
Liczba pojedynczych wentylatorów przewidzianych w układzie chłodzenia karty graficznej (jeśli występują - patrz „Chłodzenie”).
Ogólnie rzecz biorąc, im mocniejsza karta graficzna, tym bardziej wydajne chłodzenie jest wymagane. Tak więc
jeden wentylator jest typowy głównie dla podstawowych i niedrogich urządzeń
klasy średniej, dwa - od średnio zaawansowanej do zaawansowanej, a
trzy lub
więcej to niemal jednoznaczne oznaki rozwiązania premium. Jednocześnie nie ma tutaj ścisłej zależności, a modele o podobnej charakterystyce mogą mieć różną liczbę wentylatorów (zwłaszcza, że o wydajności chłodzenia decyduje nie tylko liczba wentylatorów, ale także ich średnica). Ale parametr ten wpływa jednoznacznie na długość karty graficznej i odpowiednio ilość miejsca wymaganą do jej zainstalowania.
Synchronizacja podświetlenia
Technologia
synchronizacji podświetlenia przewidziana na karcie graficznej o odpowiedniej konstrukcji.
Sama synchronizacja pozwala na „dopasowanie” podświetlenia karty graficznej do podświetlenia innych elementów systemu - płyty głównej, obudowy, klawiatury, myszy itp. Dzięki tej koordynacji wszystkie komponenty mogą zmieniać kolor synchronicznie, jednocześnie włączać / wyłączać się itp. Specyfika działania takiego podświetlenia zależy od zastosowanej technologii synchronizacji i z reguły każdy producent ma swoją własną (Mystic Light Sync firmy MSI, RGB Fusion firmy Gigabyte itp.). Od tego zależy również kompatybilność komponentów: wszystkie muszą obsługiwać tę samą technologię. Dlatego najłatwiejszym sposobem osiągnięcia zgodności podświetlenia jest montaż komponentów jednego producenta.
Pobór mocy
Maksymalny pobór mocy praz kartę graficzną podczas pracy. Parametr ten jest ważny przy obliczaniu całkowitej mocy zużywanej przez cały system i wyborze zasilacza, który zapewnia odpowiednią moc.
Zalecana moc zasilacza od
Najmniejsza moc zasilacza zalecana dla komputera z tą kartą graficzną.
Parametr ten z reguły jest znacznie wyższy niż pobór mocy samej karty graficznej. To naturalne - w końcu zasilacz musi dostarczać energię elektryczną do całego systemu, a nie tylko do adaptera wideo. Jednocześnie im wyższa moc karty graficznej, tym nieuchronnie wyższe zużycie energii przez cały komputer. Wynika to nie tylko z „żarłoczności” samego adaptera graficznego, ale także z zużycia pozostałych komponentów komputera: z reguły wysokiej klasy karta graficzna jest połączona z równie mocnym (i energochłonnym) systemem.
Mając to na uwadze, producenci wskazują minimalny zalecany zasilacz. Oczywiście takie zalecenia są opcjonalne; jednak w przypadku zastosowania zasilacza o mocy niższej od zalecanej prawdopodobieństwo wystąpienia awarii podczas pracy znacznie wzrasta - do tego stopnia, że nawet bardzo skromny system może po prostu się „nie uruchomić”.
Liczba zajmowanych slotów
Liczba gniazd zajmowanych przez kartę graficzną na tylnej ścianie jednostki systemowej.
Wskaźnik ten umożliwia oszacowanie ilość miejsca potrzebnego do zainstalowania karty graficznej. Jest to istotne w świetle faktu, że współczesne karty graficzne mogą mieć dość obszerny zestaw złączy, a dla tego zestawu już dawno nie wystarcza standardowego slota z 1 gniazdem. Jest to szczególnie ważne w przypadku modeli o dużej mocy. W związku z tym wiele rozwiązań, zwłaszcza ze średniej i wyższej półki, zajmuje
dwa, a nawet
trzy sloty naraz.
Osobno warto omówić modele, dla których w charakterystyce jest podana ułamkowa liczba gniazd - zwykle 2,5 lub 2,7. Ten szczegół jest podawany przez producenta w celach reklamowych - jako potwierdzenie, że karta graficzna jest mniejsza niż pełnowartościowe rozwiązanie z 3 gniazdami. Jednak w praktyce nie ma różnicy między tymi wariantami: karty graficzne dla gniazd 2,5 lub 2,7 nadal nakładają się na trzecie gniazdo (choć częściowo), co czyni go bezużytecznym.
Długość karty graficznej
Całkowita długość karty graficznej.
Długość w tym przypadku oznacza wielkość urządzenia od płytki ze złączami (która jest przymocowana do tylnej ściany jednostki systemowej) na przeciwną stronę. Sama płyta i wystające na zewnątrz łączniki zwykle nie są brane pod uwagę.
Dane dotyczące długości karty graficznej są potrzebne przede wszystkim po to, aby ocenić, czy w konkretnym przypadku jest na nią wystarczająco dużo miejsca. Ponadto dłuższe płyty z reguły mają bardziej zaawansowane cechy (chociaż nie ma tu ścisłej zależności, a karty graficzne podobnej klasy mogą mieć różne długości). Jeśli chodzi o konkretne wartości, najbardziej kompaktowe rozwiązania obecnie mają rozmiar
150 - 200 mm lub
mniej ; wskaźnik
200-250 mm nadal można uznać za stosunkowo mały,
250-290 mm - średni, a wiele modeli (głównie na poziomie zaawansowanym) ma długość
ponad 290 mm.