Tryb nocny
Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie ASRock B550M Phantom Gaming 4 vs Gigabyte B550M DS3H

Dodaj do porównania
ASRock B550M Phantom Gaming 4
Gigabyte B550M DS3H
ASRock B550M Phantom Gaming 4Gigabyte B550M DS3H
Porównaj ceny 13Porównaj ceny 11
Opinie
0
0
0
1
0
0
0
3
TOP sprzedawcy
Przeznaczeniegamingowagamingowa
SocketAMD AM4AMD AM4
Formatmicro-ATXmicro-ATX
Fazy zasilania88
Radiator VRM
Wymiary (WxS)244x244 mm244x244 mm
Chipset
ChipsetAMD B550AMD B550
BIOSAmiAmi
UEFI BIOS
Pamięć RAM
DDR44 banki(ów)4 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania4733 MHz4000 MHz
Maks. wielkość pamięci128 GB128 GB
Obsługa XMP
Interfejsy dyskowe
SATA 3 (6 Gb/s)4 szt.4 szt.
Złącze M.22 szt.2 szt.
Interfejs M.21xSATA/PCI-E 2x, 1xPCI-E 4x1xSATA/PCI-E 4x, 1xPCI-E 2x
Zintegrowany kontroler RAID
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x1 szt.1 szt.
Liczba gniazd PCI-E 16x2 szt.2 szt.
Tryby PCI-E16x/4x
Obsługa PCI Express4.04.0
Obsługa CrossFire (AMD)
Złącza na płycie głównej
Moduł TPM
USB 2.02 szt.1 szt.
USB 3.2 gen12 szt.1 szt.
Wyjścia wideo
Wyjście DVIDVI-D
Wyjście HDMI
Wersja HDMIv.2.1v.2.1
DisplayPort
Wersja DisplayPortv.1.4
Zintegrowany układ audio
Układ audioRealtek ALC887/897Realtek ALC887
Dźwięk (liczba kanałów)7.17.1
Interfejsy sieciowe
LAN (RJ-45)1 Gb/s1 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANRealtek RTL8111HRealtek GbE
Złącza na tylnym panelu
USB 2.02 szt.4 szt.
USB 3.2 gen14 szt.4 szt.
PS/21 szt.1 szt.
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin8 pin
Liczba złączy wentylatorów CPU4 szt.3 szt.
Data dodania do E-Katalogpaździernik 2020maj 2020

Maksymalna częstotliwość taktowania

Maksymalna częstotliwość taktowania pamięci RAM obsługiwana przez płytę główną. Rzeczywista częstotliwość taktowania zainstalowanych modułów pamięci RAM nie powinna przekraczać tego wskaźnika - w przeciwnym razie możliwe są awarie, a możliwości pamięci RAM nie będą mogły być w pełni wykorzystane.

W przypadku nowoczesnych komputerów PC częstotliwość pamięci RAM 1500 - 2000 MHz lub mniej jest uważana za bardzo niską, 2000 - 2500 MHz jest skromna, 2500 - 3000 MHz jest średnia, 3000 - 3500 MHz jest powyżej średniej, a w najbardziej zaawansowanych płytach obsługiwane mogą być 3500 - 4000 MHz, a nawet ponad 4000 MHz.

Interfejs M.2

Interfejsy elektryczne (logiczne) realizowane poprzez fizyczne złącza M.2 na płycie głównej.

Więcej informacji na temat takich złączy można znaleźć powyżej. Tutaj należy pamiętać, że mogą współpracować z dwoma typami interfejsów:
  • SATA to standard pierwotnie stworzony dla dysków twardych. Zazwyczaj M.2 obsługuje najnowszą wersję, SATA 3; jednak nawet ona znacznie ustępuje PCI-E pod względem szybkości (600 MB/s) i funkcjonalności (tylko dyski);
  • PCI-E (Inaczej NVMe) to najpopularniejszy nowoczesny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Nadaje się do różnych kart rozszerzeń (takich jak karty bezprzewodowe) i pamięci masowej, a prędkości PCI-E pozwalają w pełni wykorzystać potencjał nowoczesnych dysków SSD. Maksymalna prędkość transmisji danych zależy od wersji tego interfejsu i liczby linii. W nowoczesnych złączach M.2 można znaleźć wersje PCI-E 3.0 i 4.0, o prędkościach odpowiednio około 1 GB/s i 2 GB/s na linię; a liczba linii może wynosić 1, 2 lub 4 (odpowiednio PCI-E 1x, 2x i 4x)
Konkretnie sam interfejs M.2 w charakterystyce płyt głównych jest wskazywany przez liczbę samych złączy i typ interfejsów przewidzianych w każdej z nich. Na przykład notacja „3xSATA / PCI-E 4x” oznacza trzy złącza, które mogą pracować zarówno w formatach SATA, jak i PCI-E 4x; a oznaczenie „1xSATA / PCI-E 4x, 1xPCI-E 2x” oznacza dwa złącza, z których jedno działa jako SATA lub PCI-E 4x, a drugie tylko jako PCI-E 2x.

Tryby PCI-E

Tryby pracy slotów PCI-E 16x obsługiwane przez płytę główną.

Aby uzyskać więcej informacji na temat tego interfejsu, patrz wyżej, a dane dotyczące trybów określa się w przypadku, jeśli na płycie jest kilka gniazd PCI-E 16x. Dane te określają, z jaką prędkością te gniazda mogą pracować przy jednoczesnym podłączaniu do nich kart rozszerzeń, ile linii może używać każdy z nich. Faktem jest, że całkowita liczba linii PCI-Express na każdej płycie głównej jest ograniczona i zwykle nie wystarczają one do jednoczesnej pracy wszystkich 16-kanałowych gniazd z pełną mocą. W związku z tym, podczas jednoczesnej pracy, prędkość nieuchronnie musi zostać ograniczona: na przykład zapis 16x / 4x / 4x oznacza, że płyta główna ma trzy 16-kanałowe gniazda, ale jeśli trzy karty graficzne są do nich podłączone jednocześnie, to drugie i trzecie gniazdo będą w stanie zapewnić prędkość tylko na poziomie PCI-E 4x. W związku z tym dla innej liczby slotów i liczby cyfr będą odpowiednie. Istnieją również karty z kilkoma trybami - na przykład 16x / 0x / 4 i 8x / 8x / 4x (0x oznacza, że slot w ogóle przestaje działać).

Należy zwrócić uwagę na parametr ten głównie podczas instalowania kilku kart graficznych jednocześnie: w niektórych przypadkach (na przykład podczas korzystania z technologii SLI), aby karty graficzne działały poprawnie, muszą być podłączone do gniazd z tą samą prędkością.

Obsługa CrossFire (AMD)

Obsługa przez płytę główną technologii AMD Crossfire.

Technologia ta pozwala na jednoczesne podłączenie do komputera wielu oddzielnych kart graficznych AMD i łączenie ich mocy obliczeniowej, odpowiednio zwiększając wydajność graficzną systemu w określonych zadaniach. W związku z tym funkcja ta oznacza, że płyta główna jest wyposażona w co najmniej dwa gniazda na karty graficzne - PCI-E 16x; ogólnie Crossfire umożliwia podłączenie do 4 pojedynczych kart.

Ta funkcjonalność jest szczególnie ważna w przypadku wymagających gier i „ciężkich” zadań, takich jak renderowanie 3D. Należy jednak mieć na uwadze, że aby móc korzystać z kilku kart graficznych, taką możliwość należy zapewnić również w aplikacji uruchomionej na komputerze. Dlatego w niektórych przypadkach jedna wydajna karta graficzna jest lepsza niż kilka stosunkowo prostych kart z taką samą całkowitą pamięcią VRAM.

Podobna technologia firmy NVIDIA nazywa się SLI (patrz poniżej). Crossfire różni się od niego głównie trzema punktami: możliwością łączenia kart graficznych z różnymi modelami procesorów graficznych (najważniejsze jest to, aby były one zbudowane na tej samej architekturze), brak konieczności stosowania dodatkowych kabli czy mostków (karty graficzne współpracują bezpośrednio przez magistralę PCI-E) oraz nieco mniejszym kosztem (co pozwala na wykorzystanie tej technologii nawet w niedrogich płytach głównych). Dzięki temu ostatniemu prawie wszystkie...płyty główne z SLI obsługują również Crossfire, ale nie odwrotnie.

USB 2.0

Liczba złączy USB 2.0 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej, znajdujących się na przednim panelu obudowy. Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się na przednim panelu, które jest w stanie obsłużyć.

W szczególności USB 2.0 jest najstarszą, szeroko używaną wersją. Zapewnia prędkość transmisji danych do 480 Mb/s, jest uważana za przestarzałą i jest stopniowo zastępowana przez bardziej zaawansowane standardy, przede wszystkim USB 3.2 gen1 (dawniej USB 3.0). Niemniej jednak wiele urządzeń peryferyjnych jest nadal produkowanych pod złącze USB 2.0: możliwości tego interfejsu w zupełności wystarczą dla większości urządzeń, które nie wymagają dużych prędkości połączenia.

USB 3.2 gen1

Liczba złączy USB 3.2 gen1 znajdujących się na płycie głównej.

Złącza USB (wszystkie wersje) służą do podłączenia do portów USB płyty głównej umieszczonych na zewnątrz obudowy (najczęściej na przednim panelu, rzadziej na górze lub z boku). Specjalny kabel łączy taki port ze złączem, podczas gdy jedno złącze z reguły współpracuje tylko z jednym portem. Innymi słowy, liczba złączy na płycie głównej odpowiada maksymalnej liczbie złączy USB znajdujących się w obudowie, które jest w stanie obsłużyć. Przy tym należy pamiętać, że w tym przypadku mówimy o tradycyjnych złączach USB A; złącza dla nowszych USB-C są omawiane są w charakterystykach osobno.

Co się tyczy konkretnie wersji USB 3.2 gen1 (wcześniej znany jako USB 3.1 gen1 i USB 3.0), to ona zapewnia prędkość transmisji danych do 4,8 Gb/s i wyższą moc zasilania niż wcześniejszy standard USB 2.0. Jednocześnie technologia USB Power Delivery, umożliwiająca osiągnięcie mocy do 100 W, zwykle nie jest obsługiwana przez złącza tej wersji dla USB A (choć można ją zaimplementować w złączach na USB-C).

Wyjście DVI

Obecność na płycie głównej własnego wyjścia DVI; również w tym punkcie określono konkretny typ tego interfejsu.

Takie wyjście jest przeznaczone do transmisji wideo z wbudowanej karty graficznej (patrz wyżej) lub procesora ze zintegrowaną grafiką (podkreślamy, że nie jest możliwe wyprowadzenie do niej sygnału z dedykowanej karty graficznej przez chipset płyty głównej). Jeśli chodzi w szczególności o DVI, jest to standard pierwotnie stworzony dla cyfrowych urządzeń wideo, jednak dopuszcza również format sygnału analogowego, w zależności od typu. W nowoczesnej technologii komputerowej, w tym w płytach głównych, można znaleźć dwa typy DVI:

— DVI-D. Standard, przewidujący przekazanie sygnału tylko w postaci cyfrowej. W zależności od obsługiwanego trybu, maksymalna rozdzielczość takiego przekazu wideo może wynosić 1920 na 1200 (jednokanałowy Single Link) lub 2560x1600(dwukanałowy Dual Link); przy czym wtyczki Single Link można podłączać do portów Dual Link, jednak nie odwrotnie. Należy również pamiętać, że takie złącza są kompatybilne z HDMI przez adaptery podczas gdy w niektórych przypadkach może być zapewniona nawet transmisja dźwięku (chociaż początkowo funkcja ta nie jest obsługiwana w DVI-D i jej obecność należy sprawdzić osobno).

— DVI-I. Standard, łączący w sobie opisany powyżej DVI-D z analogowym DVI-A i pozwala wyprowadzać sygnał zarówno w formacie cyfrowym jak i analogowym. DVI-A swoimi właściwościami jes...t zgodny z VGA (patrz wyżej): obsługuje rozdzielczości do 1280 x 1024 włącznie i umożliwia podłączenie ekranów VGA za pomocą prostego adaptera.

DisplayPort

Obecność u płyty głównej własnego wyjścia DisplayPort.

Takie wyjście jest przeznaczona do transmisji wideo z wbudowanej karty graficznej (patrz wyżej) lub procesor z zintegrowaną grafiką (podkreślamy, że wyświetlać na nim sygnał z karty graficznej przez chipset "płyty głównej" nie można). Co do konkretnie DisplayPort, to cyfrowy interfejs, stworzony specjalnie dla sprzętu komputerowego; w szczególności jest on standardem dla monitorów Apple, choć spotyka się i w telefonach innych producentów.

Konkretne możliwości DisplayPort mogą być różne, w zależności od wersji. Więcej o tym poniżej; tutaj należy pamiętać, że interfejs ten radzi sobie z sygnałem wideo w wysokiej rozdzielczości, a także ma ciekawą funkcję — podłączenie kilku monitorów do jednego wyjścia, konsekwentnie, "łańcuchem" (daisy chain).

Wersja DisplayPort

Wersja interfejsu DisplayPort (patrz wyżej) zainstalowana na płycie głównej.

— v.1.2. Najstarsza z stosowanych obecnie wersji (2010 rok). To właśnie w niej po raz pierwszy pojawiła się obsługa 3D, możliwość pracy ze złączem miniDisplayPort, a także opcja szeregowego łączenia wielu ekranów do jednego portu (daisy chain). Maksymalna rozdzielczość, w pełni obsługiwana przez v.1.2 — 5K przy 30 klatkach na sekundę, z pewnymi ograniczeniami jest również obsługiwane wideo 8K. A aktualizacja v.1.2a, wprowadzona w 2013 roku, dodała kompatybilność z technologią FreeSync stosowaną w kartach graficznych AMD.

— v.1.3. Aktualizacja standardu DisplayPort wydana w 2014 roku. Dzięki zwiększonej przepustowości możliwe było zapewnienie pełnej obsługi wideo 8K (przy 30 klatkach na sekundę), a w standardach 4K i 5k zwiększenie maksymalnej liczby klatek na sekundę odpowiednio do 120 i 60 klatek na sekundę. Kolejną kluczową aktualizacją była Funkcja Dual-mode, która zapewnia kompatybilność z interfejsami HDMI i DVI za pośrednictwem najprostszych pasywnych adapterów.

— v.1.4. Najnowsza wersja z szeroko rozpowszechnionych. Przepustowość została jeszcze bardziej zwiększona (prawie o połowę w porównaniu z v.1.2, co pozwoliło, choć z pewnymi ograniczeniami, wysyłać 4K i 5K-sygnał wideo z szybkością do 240 kl./s i 8K — do 144 kl./s. Oprócz tego, dodano obsługę szeregu specjalnych funkcji, w tym HDR10, a maksymalna liczba jednocześnie przesyłanych kanałów dźwięku wzrosła do 32.
Dynamika cen
ASRock B550M Phantom Gaming 4 często porównują
Gigabyte B550M DS3H często porównują