Польща
Каталог   /   Фототехніка   /   Оптичні прилади   /   Мікроскопи

Порівняння Sigeta Prize Novum 20x-1280x 0.3Mp vs Sigeta Prize Novum 20x-1280x 2Mp

Додати до порівняння
Sigeta Prize Novum 20x-1280x 0.3Mp
Sigeta Prize Novum 20x-1280x 2Mp
Sigeta Prize Novum 20x-1280x 0.3MpSigeta Prize Novum 20x-1280x 2Mp
від 695 zł
Товар застарів
від 787 zł
Товар застарів
ТОП продавці
Призначення
 
навчальний
Типбіологічнийбіологічний
Принцип роботиоптико-цифровоїоптико-цифрової
Кратність збільшення20 – 1280 x20 – 1280 x
Метод дослідження
 
світлового поля
Об'єктив і окуляр
Револьверна головка3 об'єктиви3 об'єктиви
Об'єктив
4x, 10x, 40x(s)
ахромат
4x, 10x, 40x(s)
ахромат
Окуляр
монокуляр
WF5x, WF16x
нахил 45°
монокуляр
WF5x, WF16x
нахил 45°
Конструкція
Предметний столик
рухомий
 
рухомий
90x96 мм
Препаратоводій
Фокусуваннягрубагруба
підсвічуваннясвітлодіодна (LED)світлодіодна (LED)
Верхнє підсвічування
Конденсороднолінзовий, N. A.=0.65, нерегульованийоднолінзовий, N. A.=0.65, нерегульований
Діафрагмадискова
Світлофільтри
Кількість мегапікселів2 МП
Функції та можливості
регулювання яскравості
запис фото / відео
регулювання яскравості
запис фото / відео
Інтерфейси підключення
 
USB
Інше
Джерело живлення
мережа 230 В
батарейки /2xAA/
мережа 230 В
батарейки /2xAA/
Комплектація
камера /0.3 Мпікс/
набір аксесуарів і препаратів
лінза Барлоу /2x/
чохол/кейс
камера /2 Мпікс/
набір аксесуарів і препаратів
лінза Барлоу /2x/
чохол/кейс
Матеріал корпусаметалметал
Вага1.37 кг1.37 кг
Дата додавання на E-Katalogвересень 2017вересень 2017

Призначення

Загальне призначення мікроскопа.

У наш час зустрічається 4 основних варіанти призначення: дитячі, навчальні, лабораторні і спеціалізовані мікроскопи. При цьому різні варіанти цілком можуть поєднуватися в одній моделі – наприклад, найбільш прості і недорогі навчальні мікроскопи цілком можуть позиціонуватися також як дитячі, а лабораторні можуть мати особливу спеціалізацію. А ось докладний опис різних варіантів призначення:

— Дитячий. Найбільш прості і недорогі мікроскопи, призначені насамперед для дітей, які роблять свої перші кроки в природничих науках (а також для інших невимогливих користувачів, яким не потрібен особливо прогресивний функціонал). Відповідно, в подібних пристроях відсутні спеціальні функції на зразок блокування фокуса, освітлення по Келлеру, відеовиходів (для цифрових і оптико-цифрових моделей), тринокуляра з можливістю підключення камери тощо. Крім того, корпус може виконуватися в яскравих кольорах, а в якості матеріалу корпусу зазвичай використовується пластик. Проте, багато дитячих мікроскопів оснащуються револьверними головками для швидкого переналаштування кратності, а загальна кратність збільшення цілком може перевищувати 600х «з коробки» і 1000х в топовій комплектації.

— Навчальний. Мікроскопи, що добре підходять для застосування в навчальних цілях; іноді таке призначення н...авіть прямо вказується виробником. Конкретний функціонал подібних моделей досить різноманітний, тип також може бути різним (як біологічним, так і стереоскопічним). В цілому ж пристрої цієї спеціалізації займають проміжне положення між простими і недорогими дитячими мікроскопами і прогресивними лабораторним обладнанням. При цьому існує чимало моделей, що мають комбіноване призначення – «дитячий/навчальний» або «навчальний/лабораторний». Перший різновид простий і недорогий, в освітніх цілях він підійде в основному для школи; другий варіант, в свою чергу, може стати в нагоді навіть на університетському факультеті природничих наук.

— Лабораторний. Найбільш прогресивний різновид сучасних мікроскопів, розрахований на повноцінні лабораторні дослідження та інші серйозні завдання. Відповідно, подібні моделі коштують недешево, проте дають якісне зображення і в цілому мають найбільш широкий функціонал (хоча конкретний набір можливостей, зрозуміло, може бути різним). Серед можливостей, що зустрічаються в лабораторних мікроскопах – рухомий столик, встановлення світлофільтрів, 2 типи освітлення (нижнє і верхнє), освітлення по Келлеру, придатність для спеціальних методів мікроскопії (флуоресцентна, фазоконтрастная) тощо.

— Спеціалізований. Мікроскопи специфічної конструкції і призначення, які так чи інакше відрізняються від більш традиційних моделей. Ці відмінності можуть бути різними; відповідно, різниться і конкретна спеціалізація. Так, останнім часом досить значну популярність отримали портативні моделі для смартфонів: за допомогою спеціальної прищіпки такий прилад кріпиться прямо навпроти основної камери, і роль окуляра виконує екран гаджета. Інший популярний різновид – компактні цифрові мікроскопи без власних екранів, що підключаються до ПК або ноутбуків по USB, а то і до смартфонів по Wi-Fi (в тому числі і через Інтернет). Також сюди входить професійне обладнання з досить вузькою спеціалізацією: стереоскопи зі спеціальними кріпленнями для зубного протезування, для пайки мікросхем тощо; мікроскопи для металургійних досліджень; пристрої на штативі з виносною штангою, призначені для огляду окремих ділянок на великих предметах; порівняльні мікроскопи для балістичних і трасологічних досліджень в криміналістиці тощо.

Метод дослідження

Методи дослідження, застосовні в даній моделі мікроскопа.

– Світлого поля. Найбільш відомий і широко застосовуваний метод світлової мікроскопії. Об'єкт, що розглядаєтья, при таких дослідженнях поміщається на світлий фон, на якому він виглядає темнішим. Відзначимо, що для дослідження можуть використовуватися різні способи освітлення: прямий наскрізний, косий, відбитий. Перший варіант (коли світло від лампи або дзеркала під предметним столиком просвічує зразок наскрізь) оптимально підходить для дослідження прозорих зразків, ключові деталі яких темніше загального фону; характерні приклади — тонкі зрізи тваринних і рослинних тканин. Косе світло схоже за специфікою застосування, при цьому воно дає сірий фон і поступається прямому за ефективністю підсвічування, однак забезпечує більш рельєфне зображення. Що стосується відбитого світла, то воно в даному разі незамінне при розгляданні непрозорих предметів: зразків руд та інших матеріалів, напівпровідникових пластин тощо. У будь-якому випадразіку світлопольна мікроскопія добре виявляє перш за все деталі, які помітно відрізняються за світлопропусканням або показником заломлення від навколишнього фону (при наскрізному освітленні), або дають помітні відсвіти/тіні (при відбитому).

– Темного поля. Свого роду протилежність світлопольному дослідженню: предмет, що розглядається, або окремі його елементи виходять світлішими, ніж навколишній фон. Однак це не просто «негатив» зображення, а саме окремий метод зі своїми о...собливостями. Підсвічування при темнопольній мікроскопії зазвичай наскрізне, а здійснюється воно специфічним чином: середина променя світла перекривається блендою, а світловий «циліндр», проходячи через лінзу-конденсор, перетворюється в «пісочний годинник». При цьому в найвужчому місці такого «годинника» знаходиться препарат, а в сторону об'єктива світловий конус розширюється так, що не потрапляє в оптику. Таким чином, користувач бачить в мікроскоп тільки світло, розсіяне препаратом, і темний фон навколо. Подібний спосіб дослідження, крім іншого дає змогу виявляти «плавні» деталі, які не виділяються різко на навколишньому тлі і не видимі при світлопольному дослідженні. Серед варіантів застосування темнопольної мікроскопії – робота з незабарвленими біологічними препаратами (клітини, зразки тканин, мікроорганізми), а також дослідження деяких прозорих матеріалів на дрібні дефекти поверхні.

– Фазового контрасту. Метод, застосовуваний для дослідження прозорих і безбарвних предметів з неоднорідною структурою, застосовуваний тоді, коли цю неоднорідність не можна виявити більш традиційною світлопольною мікроскопією. Ідея даного методу полягає в тому, що при проходженні через структури з різними показниками заломлення світло отримує різні зміни по фазі. Ці зміни не видно в звичайну оптику, проте їх цілком можна зробити видимими за допомогою спеціального обладнання — а саме конденсора і об'єктива особливої конструкції. Відповідно, таке обладнання обов'язково входить до комплекту мікроскопа.

— Флуоресцентний. Цей метод передбачає підсвічування спостережуваних об'єктів ультрафіолетом (тому також відомий як ультрафіолетова мікроскопія). Під дією такого освітлення ці об'єкти або їх окремі елементи починають світитися у видимому діапазоні, а фон залишається темним. При необхідності в препарат вводяться фарбувальні речовини, що поліпшують світність (характерний приклад — біологічні об'єкти, більшість з яких самі по собі флуоресціюють досить слабо). В окуляр мікроскопа зображення потрапляє через фільтр, який відсіває УФ-промені, але вільно пропускає світіння препарату.
Одна з головних особливостей флуоресцентної мікроскопії – висока роздільна здатність: вона дає змогу чітко бачити навіть дуже дрібні предмети, які недоступні погляду в звичайному видимому діапазоні. Фактично даний метод за роздільною здатністю знаходиться між оптичною та електронною мікроскопією; при цьому, на відміну від електронних і атомних мікроскопів, прилади з підтримкою УФ-методики дають змогу розглядати навіть «начинку» живих клітин і мікроорганізмів. А деякі спеціальні варіанти цієї методики дають змогу досягти вже не мікро-, а наноскопічних збільшень. Другий популярний спосіб застосування флуоресцентних досліджень – виявлення частинок, елементів, вкраплень тощо, які не видимі під звичайним світлом, але добре виділяються в ультрафіолеті. Характерний приклад – поверхня багатьох металів і сплавів.

Предметний столик

Тип і/або розмір предметного столика, встановленого в мікроскопі. Нагадаємо, предметний столик – це поверхня, на якій розміщується досліджуваний препарат.

— Стаціонарний. Предметний столик, закріплений нерухомо; наведення на різкість в таких мікроскопах здійснюється за рахунок руху вгору-вниз тубуса з об'єктивом і окуляром. Такі системи прості і недорогі, проте наводити різкість, дивлячись в окуляр, що постійно рухається, не дуже зручно. Крім того, для прогресивних біологічних мікроскопів (див. «Тип») з бінокулярами і тринокулярами (див. «Окуляр») цей варіант слабо підходить ще й з деяких конструктивних причин. А ось абсолютна більшість стереомікроскопів оснащується саме стаціонарними столиками – це найбільш розумна конструкція з урахуванням специфіки застосування.

Рухомий. У мікроскопах цього типу вся оптична система нерухомо закріплена на штативі, а предметний столик може переміщатися вгору-вниз для наведення оптики на різкість. Така конструкція зустрічається виключно в біологічних мікроскопах (див. «Тип»). Вона трохи складніше і дорожче, ніж при нерухомому столику, але в той же час значно зручніше: при наведенні на різкість окуляр не рухається, що дає змогу з комфортом підлаштовувати зображення, не відриваючись від спостереження. Крім того, саме рухомий столик є найбільш підходящим для прогресивних приладів з бінокулярами і тринокулярами (див. «Окуляр»), практично всі подібні мікроскопи мають подібне обладнання....

Що стосується розмірів предметного столика, то вони можуть варіюватися від 75х75 мм до 240х200 мм і навіть більше. Тут при виборі варто враховувати плановані розміри досліджуваних препаратів.

Діафрагма

Тип діафрагми, встановленої в мікроскоп.

Діафрагма являє собою пристосування, яке частково перекриває потік світла від системи освітлення мікроскопа. Використовується воно переважно для підлаштування освітленості, а також для деяких більш специфічних завдань (зокрема, зміни глибини різкості). При регулюванні діафрагми змінюється діаметр її робочого отвору – і, відповідно, фактичне світлопропускання; а різні типи діафрагм (ірисова або дискова) розрізняються за особливостями регулювання:

— Ірисова. Назва походить від латинського слова, що позначає райдужну оболонку ока – за схожим принципом і працюють подібні пристосування. Ірисова діафрагма складається з набору пелюсток спеціально підібраної форми (так званих ламелей). При русі на закриття ці пелюстки зсуваються від країв робочого отвору до центру, зменшуючи його діаметр, при відкритті — відповідно, рухаються назовні. Ірисові діафрагми складніше і дорожче дискових, проте мають ряд важливих переваг перед ними. Перш за все – світлопропускання у всьому робочому діапазоні таких пристосувань змінюється плавно, що дає змогу підбирати налаштування максимально точно. Управляти налаштуваннями можна, не перериваючи спостережень за препаратом; при цьому ірисові діафрагми ще й максимально компактні і легкі. Як наслідок — саме даний варіант є найбільш популярним в мікроскопах середнього класу і вище, а також нерідко зустрічається навіть в більш...простих моделях.

— Дискова. Інша назва – револьверна. Діафрагма цього типу являє собою диск з проробленими в ньому отворами різних розмірів; обертаючи диск, можна поміщати в поле зору мікроскопа різні отвори і, таким чином, міняти світлопропускання. Головними перевагами подібних пристосувань є простота конструкції, невисока вартість, надійність і простота в ремонті. З іншого боку, дискові діафрагми менш практичні і досконалі, ніж ірисові — зокрема, вони досить громіздкі і не допускають плавного регулювання. У світлі цього даний варіант застосовується переважно серед мікроскопів початкового рівня, де прогресивні характеристики не потрібні – а доступна ціна, навпаки, має ключове значення.

Світлофільтри

Наявність світлофільтрів у комплекті мікроскопа.

Світлофільтри встановлюються в систему освітлення; вони можуть бути змінними або вбудованими (зазвичай на револьверному диску). У будь-якому разі такі пристосування змінюють характеристики світла, підлаштовуючи його під особливості ситуації. Види і призначення світлофільтрів можуть бути різними, так само як їх асортимент в комплекті; ось деякі з найбільш поширених варіантів:

– Синій кольоровий. Корисний в тих ситуаціях, коли для підсвічування використовується світло від лампи розжарювання або «галогенки». Такий фільтр вирівнює колірну температуру (баланс білого), роблячи відтінки кольорів більш холодними і забезпечуючи природну передачу кольору; це особливо важливо для мікрофотографії, оскільки для отримання якісних знімків правильно виставлений баланс білого критично необхідний.

– Жовтий кольоровий. Свого роду протилежність синьому: знижує колірну температуру, надаючи зображенню більш теплий відтінок. Іноді це також буває корисно для регулювання балансу білого, однак у жовтих фільтрів є ще одна важлива область застосування: вони добре підходять для виявлення дефектів на металевих поверхнях.

– Зелений кольоровий. Ахроматні і планахроматні об'єкти, що встановлюються в більшість сучасних мікроскопів, найкраще усувають аберації в зеленій частині спектра. З урахуванням цього і застосовуються подібні фільтри: зображення, пофарбоване в зелений відтінок,...має найменше видимих спотворень. Крім того, більшість об'єктивів для фазово-контрастної мікроскопії також найбільш ефективні в зеленій частині спектра (хоча можливі й винятки).

– Матовий (дифузор). Фільтри білого забарвлення, які не змінюють відтінок світла, проте забезпечують його додаткове розсіювання. Це буває корисно, зокрема, при роботі з об'єктами невисокої кратності.

— Нейтральний. Фільтри в різних відтінках сірого кольору. Використовуються для того, щоб знизити інтенсивність освітлення, не змінюючи при цьому інших його характеристик. Подібні пристосування можуть особливо стати в нагоді при фотозйомці — а саме якщо камера не має досить короткої витримки. Відзначимо, що аналогічного ефекту можна досягти за допомогою діафрагми мікроскопа, однак при зйомці це не завжди оптимальний варіант. Так, звуження діафрагми зменшує поле зору і збільшує глибину різкості (останнє теж не завжди бажано), тоді як світлофільтри не впливають на ці параметри; до того ж в деяких ситуаціях навіть найвужча діафрагма може виявитися недостатньо «темною».

– Світлофільтри для забарвлених препаратів. Покращують видимість деталей, пофарбованих в той чи інший колір. Такі пристосування особливо популярні при дослідженнях біологічних препаратів: саме вони найчастіше обробляються барвниками, і вони ж найбільш схильні до вицвітання барвників, що ускладнює перегляд в звичайному освітленні. Відзначимо, що світлофільтри цього типу, на відміну від описаних вище кольорових, не фарбують все зображення в певний колір, а тільки приглушують всі інші кольори, крім свого «рідного».

— Флуоресцентний. Фільтри, що застосовуються у флуоресцентній мікроскопії. Діляться на два види — збуджуючі (виділяють із загального спектру підсвічування УФ-випромінювання для освітлення препарату) і замикаючі (захищають очі користувача від ультрафіолету і водночас пропускають флуоресцентне світіння препарату).

Кількість мегапікселів

Роздільна здатність сенсора камери в мегапікселях (мільйонах пікселів).

Чим вище роздільна здатність матриці — тим вище може бути і роздільна здатність відео (див. нижче), тим більш деталізоване зображення здатна забезпечувати камера. Водночас потрібно мати на увазі, що при збільшенні кількості мегапікселів (без зміни розміру матриці) зменшується розмір кожного окремого пікселя, що підвищує ймовірність виникнення шумів і погіршення загальної якості картинки. Тому сама по собі висока роздільна здатність не обов'язково є ознакою високої якості – багато що залежить і від інших моментів, наприклад, від розміру матриці.

Інтерфейси підключення

Способи передачі даних на інші пристрої, передбачені в конструкції мікроскопа.

Даний параметр актуальний перш за все для цифрових і оптико-цифрових моделей, а також для окремих оптичних приладів, оснащених камерами. Всі описані мікроскопи можуть оснащуватися виходами AV і HDMI, універсальними портами USB, картрідерами для знімних носіїв, а також бездротовими модулями Wi-Fi. Ось докладний опис кожного інтерфейсу:

– AV-вихід. Аналоговий вихід для передачі відеосигналу. Застосовується перш за все для прямої трансляції зображення з камери мікроскопа, а в деяких моделях — ще й для перегляду відзнятих матеріалів, збережених в пам'яті. Такі виходи не підтримують роздільних здатностей HD і в цілому за загальною якістю «картинки» поступаються HDMI (при тих же характеристиках камери). З іншого боку, конкретно для мікроскопів ці моменти не так часто є критичними; аналогові роз'єми все ще досить популярні і в звичайній відеотехніці, і в спеціальному обладнанні; а реалізація цього інтерфейсу обходиться недорого. Тому AV-виходи можна зустріти навіть в досить прогресивних моделях.

— HDMI. Цифровий вихід для передачі відеосигналу. Аналогічно AV, може використовуватися як для трансляції в реальному часі, так і для застосування мікроскопа в ролі відеоплеєра при перегляді збережен...их матеріалів (якщо така можливість в даній моделі взагалі передбачена). При цьому такі виходи є більш прогресивними, ніж аналогові AV: через HDMI можна передавати зображення HD-якості (в тому числі Full HD і вище), а сигнал дуже стійкий до перешкод. Також нагадаємо, що даний інтерфейс надзвичайно поширений в сучасній відеотехніці – зокрема, наявність хоча б одного входу HDMI є практично обов'язковою для телевізорів і моніторів з підтримкою HD-стандартів. З іншого боку, реалізація HDMI обходиться помітно дорожче, та й застосовувати його має сенс з досить прогресивними камерами, які самі по собі помітно впливають на ціну мікроскопів. Тому подібні виходи можна зустріти переважно в досить дорогих і прогресивних приладах.

— USB. Універсальний роз'єм, що допускає різні варіанти застосування; конкретний набір цих варіантів напряму пов'язаний з функціоналом мікроскопа. З характерних прикладів використання USB можна назвати такі: копіювання відзнятих фото і відео на комп'ютер або ноутбук; трансляція зображення в реальному часі; дистанційне управління через ПК/лептоп (наприклад, переміщенням препаратоводителя); зарядка вбудованого акумулятора тощо. Конкретний тип USB-розєму в мікроскопі може бути різним, однак в комплекті, як правило, постачається відповідний кабель для підключення до стандартного повнорозмірного порту.

– Кардридер. Пристрій для роботи з картами пам'яті – зазвичай SD, а в мініатюрних кишенькових моделях — microSD. На такі карти зазвичай записуються матеріали, відзняті камерою. Загалом дана функція помітно полегшує копіювання інформації на інші пристрої, що також мають кардридери — насамперед ноутбуки та ПК; а мініатюрні карти microSD підтримуються ще й смартфонами, планшетами та іншими портативними гаджетами. У будь-якому разі зняти карту з мікроскопа і встановити в інший пристрій нерідко буває простіше і швидше, ніж возитися з дротовим підключенням або зв'язком по Wi-Fi.

— Wi-Fi. Бездротовий модуль, який в даному разі застосовується переважно для зв'язку із зовнішнім пристроєм — таким, як смартфон, ноутбук або ПК. Підключення по Wi-Fi дає змогу як мінімум транслювати зображення з камери і копіювати відзняті нею фото, а нерідко — ще й управляти іншими функціями і налаштуваннями (яскравість освітлення, рух препаратоводителя тощо). При цьому відсутність дротів дає додаткову свободу переміщень і загальну зручність. Однак варто мати на увазі, що конкретний формат зв'язку може бути різним, його варто уточнювати окремо. Так, одні моделі підтримують тільки пряме підключення на відносно невеликій дистанції (на практиці — до пари десятків метрів, а то і менше). Інші здатні з'єднуватися із зовнішнім пристроєм через Інтернет, і тут вже відстань не грає ролі — був би доступ до Всесвітньої мережі. Треті допускають обидва формати роботи. Відзначимо також, що окремі прилади з такою функцією і взагалі не мають власних екранів і розраховані на застосування з зовнішніми гаджетами; така конструкція дає змогу зробити мікроскоп максимально компактним і зручним в перенесенні.
Динаміка цін
Sigeta Prize Novum 20x-1280x 2Mp часто порівнюють