Технологія, за якою виготовлена батарейка або акумулятор.
Технологія визначає хімічний склад «начинки» і особливості реакцій, що відбуваються в ній; як наслідок, від цього параметра напряму залежать як загальні робочі характеристики, так і специфічні правила експлуатації та зберігання. Серед акумуляторів, що перезаряджаються в наш час найбільшою популярністю користуються технології
Li-Ion,
LiFePO4 і
Ni-Mh, помітно рідше зустрічається
Ni-Cd і Ni-Zn. У батарейках же спостерігається більша різноманітність. Так, недорогі повнорозмірні елементи робляться
сольовими;
алкалінова (лужна) технологія у тому чи іншому вигляді застосовується в прогресивних повнорозмірних і порівняно простих мініатюрних батарейках-«таблетках» на 1,5 В;
срібно-оксидні елементи є більше прогресивними (і дорогим) аналогом лужних «таблеток»; а
літієва технологія дає змогу створювати мініатюрні джерела живлення напругою 3 В. Більш рідкісними і специфічними варіантами є технологія Li-SOCl2, застосовувана в повнорозмірних батарейках з підвищеними вимогами до надійності, а також повітряно-цинковим принципом роботи, що використовується в спеціалізованих джерелах живлення для слухових апаратів. Ось більш докладни
...й опис кожного зі згаданих варіантів:
— Li-Ion. Літій-іонна – одна з найбільш популярних в наш час технологій виробництва акумуляторів; першопочатково створена для портативної техніки, проте пізніше стала застосовуватися повсюдно. Такі батареї мають відмінну щільність заряду – тобто солідну ємність при порівняно невеликих розмірах і вазі. Крім того, вони швидко заряджаються, а «ефект пам'яті» (характерний, зокрема, для описаних нижче Ni-Cd елементів) в подібних джерелах енергії практично відсутній (точніше, його компенсують вбудовані контролери заряду). З недоліків можна відзначити дещо більшу вартість, ніж, наприклад, у Ni-Mh, а також чутливість до перевантажень і порушень режиму експлуатації — вони можуть привести до загоряння і навіть вибуху. Втім, більшість техніки під такі батареї має вбудовані захисні схеми; а якщо таких схем немає — досить бути уважним до режиму роботи, або купити акумулятор з вбудованою схемою захисту (див. нижче).
— LiFePO4. Модифікація літій-іонної технології (див. відповідний пункт), розроблена та випущена з метою усунення деяких недоліків Li-Ion. Літій-залізо-фосфатні акумулятори забезпечують високу щільність енергії, мають велику кількість робочих циклів заряду/розряду, характеризуються хімічною та термічною стабільністю. До того ж акумулятори LiFePO4 витримують сильні температурні коливання, підтримують швидку зарядку високими струмами та відрізняються безпекою в експлуатації. На відміну від оригінальної технології Li-Ion, ймовірність «вибуху– літій-залізно-фосфатної батареї при перевантаженні практично зведена до нуля. Загалом такі акумулятори ефективно справляються з високими піковими навантаженнями і підходять для живлення енергоємних пристроїв, також вони тримають стабільну робочу напругу майже до самого розряду.
— Ni-Mh. Вдосконалений варіант нікель-кадмієвих (Ni-Cd) акумуляторів (див. нижче), в яких для анода замість кадмію використаний особливий сплав, що поглинає водень. Це дало змогу досягти цілого ряду переваг в порівнянні з оригінальною Ni-Cd технологією. По-перше, при тих же габаритах ємність зросла в 2 – 3 рази; правда, за щільністю заряду даний тип акумуляторів все одно помітно поступається літій-іонним — однак і коштує значно дешевше. По-друге, Ni-Mh батареї екологічно безпечні і легко піддаються переробці. По-третє, «ефект пам'яті» в них проявляється рідше і усувається простіше. Правда, дана технологія не дає змогу досягти таких високих струмів розряду, як в нікель-кадмієвих батареях; проте, Ni-Mh акумулятори все одно відмінно працюють в пристроях з високим енергоспоживанням, для них вони краще підходять, ніж батарейки (навіть високоякісні лужні — див. нижче). Характерний приклад такого застосування – цифрові фотокамери. Також з переваг даної технології можна відзначити стабільну напругу: вона залишається практично незміннимою практично весь час роботи, і помітно падає лише «на останніх відсотках заряду». До недоліків же можна віднести досить високий рівень саморозряду; однак цього недоліку позбавлені акумулятори формату «low self-discharge» (Ni-MH LSD), що випускаються деякими виробниками. Саморозряд в таких джерелах живлення вдалося знизити настільки, що багато з них надходять у продаж зарядженими і готовими до використання (як звичайні батарейки) і зберігають достатній запас енергії протягом 1 – 2 років.
Відзначимо, що Ni-Mh аналоги 1,5-вольтових батарейок (наприклад, типорозмірів АА і ААА) мають дещо меншу номінальну напругу — 1,2 В. Однак більшість пристроїв, розрахованих на подібні типорозміри, враховують цю різницю, і проблеми з взаємозамінністю виникають вкрай рідко.
— Ni-Cd. Дана технологія виробництва акумуляторів в наш час нерідко сприймається як застаріла; проте, подібні елементи продовжують випускатися і застосовуватися. Нікель-кадмієві батареї мають досить невисоку ємність, а також сильно схильні до «ефекту пам'яті»: якщо акумулятор регулярно заряджати, не розрядивши при цьому повністю, його ефективна ємність знижується (як ніби-то батарея «запам'ятовує», до якого рівня її зазвичай розряджають, і приймає його як нульовий). Аналогічне явище може виникнути при регулярному перезаряді — зокрема, використанні недорогих пристроїв для крапельної підзарядки (компенсації саморозряду повністю зарядженого акумулятора). Крім того, технологія виробництва Ni-Cd батарей екологічно небезпечна, а самі акумулятори складні в переробці та утилізації. Проте, такі джерела живлення мають цілий ряд важливих (а в деяких ситуаціях — і взвгалі принципових) переваг перед іншими акумуляторними батареями. По-перше, технології Ni-Cd практично немає рівних при роботі на високих струмах розряду: навіть вельми значні навантаження нормально переносяться і практично не впливають на ефективну ємність батареї (докладніше про цей вплив див. «Ємність»). По-друге, акумулятори даного типу не бояться ні глибокого переразряду, ні високих і низьких температур, а також безпечні при механічних пошкодженнях. По-третє, у міру розряду напруга у нікель-кадмієвих батарей знижується дуже повільно (на відміну, наприклад, від алкалінових одноразових батарейок). Всі ці моменти роблять даний тип акумуляторів відмінно підходящими для пристроїв, що характеризуються високим енергоспоживанням — зокрема, електроінструментів і моделей на радіоуправлінні.
Аналогічно Ni-Mh, подібні елементи в «півторавольтовому» типорозмірі (наприклад, АА або ААА) видають не 1,5 В, а тільки 1,2 В.
— Ni-Zn. Одна з найстаріших технологій виробництва акумуляторів в цілому, проте побутові джерела живлення цього типу були представлені лише в 2000-х роках. За багатьма особливостями такі елементи аналогічні описаним вище нікель-кадмієвим: зокрема, вони відмінно переносять високі струми розрядки і ідеально підходять для пристроїв зі значним енергоспоживанням, а також довго утримують робочу напругу в міру розряду. Крім того, Ni-Zn батареї в «півторавольтових» типорозмірах АА і ААА (а таких більшість) мають не знижену, а підвищену номінальну напругу — 1,6 В, що дає змогу без будь-яких обмежень застосовувати їх як більш ефективну заміну одноразовим батарейкам. Речовини, що використовуються в конструкції, екологічно безпечні і легко переробляються. Основним недоліком деякий час назад був малий термін служби (вже після 50 – 80 циклів ємність помітно знижувалася); ця проблема була вирішена, проте лише порівняно недавно. Почасти саме тому поки (станом на 2021 рік) подібних елементів на ринку небагато.
А ось основні технології, що застосовуються для одноразових батарейок:
— Сольова. Також носить назву «марганцево-цинкова», за основними металам, що використовуються в конструкції. Найбільш проста технологія з застосовуваних в повнорозмірних (не мініатюрних) батарейках; передбачає робочу напругу 1,5 В на комірку — відповідно, елементи з підвищеною напругою на зразок 9-вольтової «Крони» збираються з декількох комірок. У будь-якому разі сольові джерела живлення мають невисоку ємність, їх напруга помітно знижується в міру розряду, а високий внутрішній опір не дає змогу застосовувати такі батарейки для навантаження з високим споживаним струмом. З іншого боку, подібні елементи прості у виробництві, коштують недорого і мають дуже низький рівень саморозряду. У світлі останнього для приладів з порівняно невисоким енергоспоживанням (на зразок пультів ДУ) такі батарейки підходять навіть краще алкалінових (див. нижче): велика частина енергії лужного елемента в такому режимі роботи може піти на саморозряд, а не на живлення навантаження. Багато сольових елементів маркуються як «general purpose» («загального призначення»).
– Алкалінова. Технологія виробництва одноразових батарейок, що передбачає використання лугу у вигляді електроліту (друга поширена назва — лужна). Дуже поширена як в повнорозмірних, так і в мініатюрних джерелах живлення (див. «типорозмір») з номінальною напругою в 1,5 В; батарейки з більш високою напругою (наприклад, «Крона») складаються з декількох півторавольтових елементів. При цьому хімічний склад повнорозмірних і мініатюрних версій схожий, але ось загальні особливості (в порівнянні з аналогами тих же типорозмірів) в обох варіантах будуть різними:
- Повнорозмірні алкалінові батарейки (такі, як АА і ААА) мають більш прогресивні робочі характеристики, ніж сольові. По-перше, їх загальна ємність помітно вище – наприклад, для пальчикових батарейок вона може перевищувати 3000 мАгод (тоді як для сольових елементів максимум становить близько 900 мАгод). По-друге, лужна технологія дає змогу довше утримувати робочу напругу в міру розряду. По-третє, вона знижує саморозряд і збільшує термін зберігання батарейок. Та й діапазон допустимих температур у таких батарейок ширше, а загальна надійність — вище. Зворотною стороною даних переваг є в першу чергу більш висока вартість, ніж у сольових джерел живлення. Крім того, алкалінові батарейки не має сенсу купувати для приладів з низькими струмами споживання (таких, як пульти ДУ): вони пропрацюють довше сольових, але ця різниця не виправдовує різницю в ціні, оскільки значна частина лужного джерела живлення в таких умовах витрачається даремно — на саморозряд.
Мініатюрні алкалінові батарейки-таблетки, навпаки, є більш простим і доступним аналогом прогресивних срібно-оксидних елементів. Вони використовують маркування LR (див. «Типорозмір»), мають меншу ємність (зазвичай в 1,2 – 1,5 разів нижче, ніж у срібно-оксидних рішень в тому ж типорозмірі), схильні до швидкого зниження напруги в міру розряду, а також не розраховані на пристрої з високими струмами споживання. З іншого боку, для низькострумового навантаження (на зразок кварцових наручних годинників) таких можливостей більш ніж достатньо; а обходяться лужні таблетки помітно дешевше «срібних».
— Літієва. Літієві батарейки зазвичай мають маркування з індексом CR; вони можуть належати як до повнорозмірних, так і до мініатюрних (див. «Типорозмір»). Відмінною особливістю таких батарейок є те, що їх напруга становить 3 В на комірку; такою ж зазвичай є і загальна номінальна напруга, за винятком специфічних типорозмірів CR-P2L або 2CR5, в яких використовується кілька комірок.
Повнорозмірні батарейки, виконані за даною технологією, першопочатково розраховані насамперед на цифрові камери та інші пристрої з нерегулярним енергоспоживанням і високим споживаними струмом. Мініатюрні літієві «таблетки» також непогано підходять для аналогічного застосування (характерний приклад — брелоки автосигналізацій, в яких передавач вмикається на короткий час, проте потребує великої кількості енергії), але можуть встановлюватися і для низькострумового навантаження. Інший специфічний варіант їх використання – в ролі запасного джерела живлення для комп'ютерів, планшетів, цифрових камер тощо, що дає змогу зберігати дані про поточну дату/час і виставлені налаштування навіть при відключенні основної батареї. Наприклад, «класикою жанру» для живлення пам'яті BIOS на материнських платах є батарейка CR2032. Завдяки порівняно високій напрузі літієві «таблетки» мають досить солідну фактичну ємність, так що термін їх служби в подібній ролі зазвичай обчислюється роками і нерідко можна порівняти з терміном роботи самого пристрою.
— Li-SOCl2. Так звана літій-тіонілхлоридна технологія застосовується для створення одноразових батарейок підвищеної надійності, розрахованих в основному на несприятливі умови експлуатації. Подібні елементи живлення мають цілий ряд важливих практичних переваг. Так, їх ємність становить від 1200 мАгод для мініатюрного типорозміру 1/2 АА до більш ніж 35 000 мАгод в типорозмірі D; а враховуючи, що номінальна напруга становить 3,6 В, то фактична енергоємність виходить досить значною. Літій-тіонілхлоридні батарейки без проблем переносять високі навантаження, в тому числі імпульсні; довгий час підтримують стабільну напругу в міру розряду; мають великий діапазон допустимих температур експлуатації (від -60 °С до +85 °С в звичайних моделях і від -40 °С до +150 °С в високотемпературних); оснащуються вбудованим захистом від перевантажень і короткого замикання; і навіть при збоях такого захисту батарейка залишається вибухо- і пожежобезпечною і може застосовуватися навіть в приміщеннях, заповнених горючими парами. А саморозряд при зберіганні не перевищує 1 - 2% на рік, що забезпечує великий термін придатності.
В цілому батарейки LiSOCl2 – це ідеальний варіант для пристроїв, що мають порівняно невисоке постійне енергоспоживання і необхідність довго працювати без додаткового обслуговування. Головний недолік цієї технології — досить висока вартість, що й обмежує її застосування в основному спеціалізованими професійними джерелами живлення, що використовуються для промислового обладнання, у військовій справі, аерокосмічної галузі тощо. Також варто враховувати, що хоча Li-SOCl2 можуть виконуватися в «1,5-вольтових» типорозмірах на зразок АА, однак їх номінальна напруга навіть у таких варіантах буде складати згадані 3,6 В. А при першому вмиканні напруга зазвичай виявляється помітно нижче номінальної (близько 2,5 В, а то і менше) — це пов'язано з хімічними особливостями технології; через невеликий час даний показник повертається в норму, однак цю особливість слід враховувати при застосуванні у деяких типах приладів.
– Срібно-оксидна. Технологія, застосовувана для прогресивних мініатюрних елементів живлення з напругою 1,5 В. У таких батарейках використовуються ті ж типорозміри, що і в алкалінових «таблетках» (див. вище), однак різниться маркування: за загальноприйнятим стандартом срібно-оксидні елементи позначаються буквами SR (лужні — LR), а в нашому каталозі в якості основного прийнятий більше специфічний стандарт — три цифри з трійкою на початку, наприклад, «315» (він забезпечує більшу точність; докладніше див. «Типорозмір»). У будь-якому разі через використання срібла подібні батарейки обходяться помітно дорожче алкалінових аналогів (з цієї ж причини срібно-оксидна технологія майже не застосовується в повнорозмірних елементах); однак різниця в ціні компенсується рядом практичних переваг. Одна з найпомітніших — висока ємність (в середньому в 1,5 рази вище, ніж у алкалінових «таблеток» того ж розміру). Крім того, дана технологія забезпечує більш стабільну напругу, яке досить повільно знижується в міру розряду, низький внутрішній опір, а також стійкість до короткочасних високих навантажень. Відносно останнього варто відзначити, що більшість срібно-оксидних елементів випускається в двох варіантах спеціалізації: High Drain (для навантаження з нерівномірним і високим енергоспоживанням, наприклад, бездротових дзвінків, брелків автосигналізацій тощо) і Low Drain (для навантаження з низьким і рівномірним енергоспоживанням, такого, як наручний кварцовий годинник). При цьому у подібних батарей однакового розміру, але різної спеціалізації номінальний струм розряду може бути однаковим; однак версії HD в цілому є більш стійкими до нерівномірного навантаження.
– Повітряно-цинкова. Досить специфічна технологія, популярна в основному в компактних батарейках серії PR для слухових апаратів (див. «Типорозмір»). Для хімічної реакції, що відбувається в подібних батарейках, потрібне повітря; однак в продаж такі батарейки надходять герметично запечатаними, і реакція в них не відбувається. Завдяки цьому саморозряд при зберіганні виходить практично нульовим, а термін придатності — досить солідним. Перед використанням потрібно активувати джерело живлення, знявши встановлену на ньому заглушку і відкривши доступ повітря; відзначимо, що заглушки в повітряно-цинкових «таблетках» різного типорозміру розрізняються за кольорами, що дає змогу розрізняти їх буквально з першого погляду, без необхідності вчитуватися в дрібні написи на корпусі. Після активації термін «життя» такого елемента становить кілька тижнів — після цього електроліт висихає і батарейка стає непридатною до використання незалежно від того, застосовувалася вона як джерело живлення чи ні. Втім, при постійній роботі в слуховому апараті заряд закінчується помітно швидше, ніж висихає електроліт. Таким чином, користувач слухового апарату може тримати при собі пристойний запас подібних елементів і активувати їх по одному, у міру необхідності, не боячись, що інші втратять свої властивості.