Польща
Каталог   /   Фототехніка   /   Оптичні прилади   /   Телескопи

Порівняння OPTICON Apollo 70F300AZ vs Sigeta Volans 70/400

Додати до порівняння
OPTICON Apollo 70F300AZ
Sigeta Volans 70/400
OPTICON Apollo 70F300AZSigeta Volans 70/400
Порівняти ціни 1
від 241 zł
Товар застарів
ТОП продавці
Конструкціялінзовий (рефрактори)лінзовий (рефрактори)
Тип монтуванняазимутальнаазимутальна
Характеристики
Діаметр об'єктива70 мм70 мм
Фокусна відстань300 мм400 мм
Макс. корисне збільшення150 x140 x
Макс. дозволяюче збільшення105 x
Мін. збільшення10 x
Світлосила1/5.7
Проникна здатність11.7 зор.вел
Роздільна здатність (Dawes)1.63 кут.с
Роздільна здатність (Rayleigh)2 кут. с
Додатково
Шукачоптичний
Фокусеррейковийрейковий
Окуляри20 мм, 6 мм25 мм, 6 мм
Посадковий діаметр окуляра1.25 "1.25 "
Лінза Барлоу3 х2 х
Обертаюча лінза1.5 х
Діагональне дзеркало
Інше
Кріплення трубикріпильні гвинтикріпильна пластина
Довжина труби46 см
Висота штатива39 см
Загальна вага2 кг3 кг
Дата додавання на E-Katalogберезень 2024березень 2015
Глосарій

Фокусна відстань

Фокусна відстань об'єктива телескопа.

Фокусна відстань — це відстань від оптичного центра об'єктива до площини, на яку проєктується зображення (екрана, фотоплівки, матриці), при якому об'єктив телескопа буде видавати максимально чітке зображення. Чим довше фокусна відстань — тим більше збільшення здатний забезпечити телескоп; однак потрібно враховувати, що показники збільшення також пов'язані з фокусною відстанню використовуваного окуляра і діаметром об'єктива (детальніше про це див. нижче). А ось на що цей параметр впливає безпосередньо — так це на габарити приладу, точніше, на довжину тубуса. У разі рефракторів і більшості рефлекторів (див. «Конструкція») довжина телескопа приблизно відповідає його фокусної відстані, а ось моделі дзеркально-лінзового типу можуть бути у 3 – 4 рази коротше фокусної відстані.

Також відзначимо, що фокусна відстань враховується в деяких формулах, що характеризують якість роботи телескопа. Наприклад, вважається, що для хорошої видимості через найпростішу різновидність рефракторного телескопа — т. зв. ахромат — необхідно, щоб його фокусна відстань була не менше, ніж D^2/10 (квадрат діаметра об'єктива, поділений на 10), а краще — не менш D^2/9.

Макс. корисне збільшення

Найбільшу корисне збільшення, яке здатний забезпечити телескоп.

Фактична ступінь збільшення телескопа залежить від фокусних відстаней об'єктива (див. вище) і окуляра. Поділивши перше на друге, отримуємо ступінь збільшення: наприклад, система з об'єктивом 1000 мм і окуляром 5 мм дасть 1000/5 = 200х (за відсутності інших елементів, що впливають на кратність, таких як лінза Барлоу — див. нижче). Таким чином, встановлюючи в телескоп різні окуляри, можна змінювати ступінь його збільшення. Однак підвищувати кратність понад певної межі просто не має сенсу: хоча видимі розміри об'єктів при цьому будуть збільшуватися, їх деталізація не покращиться, і замість невеликого і чіткого зображення спостерігач буде бачити велике, але розпливчасте. Максимальне корисне збільшення якраз і є тією межею, вище якого телескоп просто не зможе забезпечити нормальну якість зображення. Вважається, що за законами оптики цей показник не може бути більшим, ніж діаметр об'єктива в міліметрах, помножений на два: наприклад, для моделі з вхідних лінзою на 120 мм максимальне корисне збільшення складе 120х2=240х.

Зазначимо, що робота на даній ступеня кратності не означає максимальної якості і чіткості зображення, проте у деяких випадках може виявитися досить зручною; докладніше про це див. «Макс. дозволяюче збільшення»

Макс. дозволяюче збільшення

Найбільшу дозволяє збільшення, яке може забезпечити телескоп. Фактично — це збільшення, при якому телескоп забезпечує максимальну деталізацію зображення і дозволяє бачити всі дрібні подробиці, які у нього в принципі можливо побачити. При зниженні ступеня збільшення нижче цього значення зменшується розмір видимих деталей, що погіршує їх видимість, при збільшенні стають помітні дифракційні явища, внаслідок яких деталі починають розпливатися.

Максимальна дозволяє збільшення менше максимального корисного (див. вище) — воно становить десь 1,4...1,5 від діаметра об'єктива в міліметрах (різні формули дають різне значення, однозначно визначити це значення неможливо, оскільки багато що залежить від суб'єктивних відчуттів спостерігача та особливостей його зору). Однак саме з такою кратністю варто працювати, якщо Ви хочете розглянути максимальну кількість деталей — наприклад, нерівності на поверхні Місяця або подвійні зірки. Велике збільшення (в межах максимального корисного) має сенс брати тільки для розглядання яскравих контрастних об'єктів, а також у тому випадку, якщо спостерігач має проблеми із зором.

Мін. збільшення

Найменше збільшення, яке забезпечує телескоп. Як і в разі максимального корисного збільшення (див. вище), в даному випадку мова йде не про абсолютно можливого мінімуму, а про межі, заходити за який не має сенсу з практичної точки зору. В даному випадку цей межу пов'язаний з розмірами вихідного окуляра телескопа — грубо кажучи, цятки світла, проєктованого окуляром на око спостерігача. Чим менше збільшення — тим більша вихідна зіниця; якщо він стає більше, ніж зіницю ока спостерігача, то частина світла в око, по суті, не потрапляє, і ефективність оптичної системи знижується. Мінімальне збільшення — це таке збільшення, при якому діаметр вихідного зіниці телескопа дорівнює розміру зіниці ока в нічних умовах (7 – 8 мм); також цей параметр називають «равнозрачковое збільшення». Використання телескопа з окулярами, що забезпечують менші значення кратності, вважається невиправданим.

Зазвичай, для визначення равнозрачкового збільшення використовують формулу D/7, де D — діаметр об'єктива в міліметрах (див. вище): наприклад, для моделі з апертурою 140 мм мінімальне збільшення становитиме 140/7 = 20х. Однак ця формула справедлива лише для нічного застосування; при спостереженні днем, коли зіницю в оці зменшується в розмірі, фактичні значення мінімального збільшення більше — близько D/2.

Світлосила

Світлосила телескопа характеризує загальну кількість світла, що «захоплюється» системою і передається в око спостерігача. З точки зору цифр світлосила — це співвідношення між діаметром об'єктива і фокусною відстанню (див. вище): наприклад, для системи з апертурою 100 мм і фокусною відстанню 1000 мм світлосила буде складати 100/1000 = 1/10. Також цей показник називають «відносним отвором».

При виборі за світлосилою необхідно насамперед враховувати, для яких цілей планується застосовувати телескоп. Великий відносний отвір дуже зручний для астрофотографії, оскільки забезпечує пропускання великої кількості світла і дає змогу працювати з меншими витримками. А ось для візуальних спостережень висока світлосила не потрібна — навіть навпаки, більш довгофокусні (і, відповідно, менш світлосильні) телескопи характеризуються меншим рівнем аберацій і дають змогу застосовувати для спостереження більш зручні окуляри. Також відзначимо, що велика світлосила потребує застосування великих об'єктивів, що відповідним чином позначається на габаритах, вазі і ціні телескопа.

Проникна здатність

Проникна здатність телескопа — це зоряна величина найбільш тьмяних зірок, що через нього можна побачити при ідеальних умовах спостереження (в зеніті, при чистому повітрі). Цей показник описує здатність телескопа бачити невеликі і слабо світяться астрономічні об'єкти.

При оцінці можливостей телескопа за цим показником варто враховувати, що чим яскравіше об'єкт — тим менше його зоряна величина: наприклад, для Сіріуса, найяскравішої зірки нічного неба, цей показник становить -1, а для набагато більш тьмяною Полярної зірки — 2. Найбільша зоряна величина, видима неозброєним оком — близько 6,5.

Таким чином, чим більший число в даній характеристиці — тим краще телескоп підходить для роботи з тьмяними об'єктами. Найскромніші сучасні моделі дають змогу розглянути зірки завбільшки приблизно 10, а найбільш прогресивні з систем споживчого рівня здатні забезпечити видимість при показниках більше 15 — це майже в 4000 разів тьмяніше, ніж мінімум для неозброєного ока.

Зазначимо, що фактична проницающа здатність безпосередньо пов'язана з кратністю збільшення. Вважається, що свого максимуму за даним показником телескопи досягають при застосуванні окулярів, що забезпечують кратність близько 0,7 D (де D — діаметр об'єктива в міліметрах).

Роздільна здатність (Dawes)

Роздільна здатність телескопа, визначена згідно з критерієм Дауеса (Dawes). Також цей показник називають «межа Дауеса». (Зустрічається також прочитання «Дейвса», але воно не є вірним).

Роздільна здатність в даному випадку — це показник, що характеризує здатність телескопа розрізнити окремі джерела світла, розташовані на близькій відстані, іншими словами — здатність побачити їх саме як окремі об'єкти. Вимірюється цей показник в кутових секундах (1" — це 1/3600 частину градуса). На відстанях, менших, ніж роздільна здатність, ці джерела (наприклад, подвійні зірки) будуть зливатися в суцільну пляму. Таким чином, чим нижче цифри в даному пункті — тим вища роздільна здатність, тим краще телескоп підходить для розглядування близько розташованих об'єктів. Однак варто враховувати, що в даному випадку мова йде не про можливості бачити повністю окремі один від одного об'єкти, а лише про можливість пізнати в витягнутому світловій плямі два джерела світла, що злилися (для спостерігача) в один. Для того, щоб спостерігач міг бачити два окремі джерела, відстань між ними повинна бути приблизно вдвічі більше заявленої роздільної здатності.

Згідно з критерієм Дауеса роздільна здатність безпосередньо залежить від діаметра об'єктива телескопа (див. вище): чим більший апертура, тим менше може бути кут між окремо видимими об'єктами і тим вище роздільна здатність. За загальним принципом цей показник аналогічний критерієм Релея (див. «Роздільна здатність (Рел...ея)»), проте він був виведений експериментальним шляхом, а не теоретично. Тому, з одного боку, межа Дауеса точніше описує практичні можливості телескопа, з іншого — відповідність цих можливостей багато в чому залежить суб'єктивних особливостей спостерігача. Простіше кажучи, людина без досвіду спостережень за подвійними об'єктами, або має проблеми із зором, може просто «не впізнати» у витягнутому плямі два джерела світла, якщо вони будуть розташовуватися на відстані, порівнянному з межею Дауеса. Додатково про різницю між критеріями див. «Роздільна здатність (Релея)».

Роздільна здатність (Rayleigh)

Роздільна здатність телескопа, визначена згідно з критерієм Релея (Rayleigh).

Роздільна здатність в даному випадку — це показник, що характеризує здатність телескопа розрізнити окремі джерела світла, розташовані на близькій відстані, іншими словами — здатність побачити їх саме як окремі об'єкти. Вимірюється цей показник в кутових секундах (1" — це 1/3600 частина градуса). На відстанях, менших, ніж роздільна здатність, ці джерела (наприклад, подвійні зірки) будуть зливатися в суцільну пляму. Таким чином, чим нижчі цифри в даному пункті — тим вища роздільна здатність, тим краще телескоп підходить для розглядування близько розташованих об'єктів. Однак варто враховувати, що в даному випадку мова йде не про можливість бачити повністю окремі один від одного об'єкти, а лише про можливість пізнати в витягнутій світловій плямі два джерела світла, що злилися (для спостерігача) в один. Для того, щоб спостерігач міг бачити два окремі джерела, відстань між ними повинна бути приблизно вдвічі більше заявленої роздільної здатності.

Критерій Релея є теоретичною величиною і розраховується за досить складною формулою, що враховує, крім діаметра об'єктива телескопа (див. вище), також довжину хвилі спостережуваного світу, відстані між об'єктами і до спостерігача і т. ін. Окремо видимими, згідно з даним методом, вважаються об'єкти, розташовані на більшій відстані один від одного, ніж для описаної вище межі Дауеса; тому для одного і того ж телескопа...роздільна здатність по Релею буде нижче, ніж по Дауесу (а цифри, зазначені у цьому пункті — відповідно, більші). З іншого боку, даний показник менше залежить від особистих особливостей користувача: розрізнити об'єкти на відстані, яка відповіднає критерію Релея, можуть навіть недосвідчені спостерігачі.

Шукач

Тип шукача, передбаченого у телескопа.

Шукачем називають пристосування, призначене для наведення пристрою на певний небесний об'єкт. Необхідність такого пристосування пов'язана з тим, що телескопи, у зв'язку з високою кратністю, мають досить невеликі кути огляду, що сильно ускладнює візуальне наведення: в окулярі видно настільки маленький ділянку неба, що визначити за цими даними, куди саме спрямований телескоп і куди його потрібно повертати, практично неможливо. Наведення ж «по тубусу» дуже неточне, особливо у разі дзеркальних моделей, що мають більшу товщину і відносно малу довжину. Шукач же має невисоку кратність (або працює взагалі без збільшення) і, відповідно, широкі кути огляду, граючи, таким чином, роль своєрідного «прицілу» для основної оптичної системи телескопа.

В сучасних телескопах можуть застосовуватися такі види шукачів:

Оптичний. Найчастіше подібні шукачі мають вигляд невеликого монокуляра, спрямованого паралельно оптичної осі телескопа. У полі зору монокуляра зазвичай наноситься розмітка, що показує, яка точка видимого простору відповідає полю зору самого телескопа. Здебільшого оптичні шукачі теж забезпечують певне збільшення — зазвичай близько 5 – 8х, тому під час роботи з такими системами, зазвичай, все одно потрібно первісне наведення телескопа «по тубусу». Перевагами оптики, порівняно з LED-шукачами, є простота конструкції, невисока вартість, а також гарна придатність для спосте...режень в місті, передмістях та інших умовах з досить світлим небом. Крім того, такі пристосування не залежать від джерел живлення. На тлі темного неба розмітка може бути видима погано, проте для таких ситуацій існує специфічний різновид шукачів — з підсвічуванням перехрестям. Правда, підсвічування потребує батарейок, але і при їх відсутності розмітка залишається видимою — як у звичайному шукачі, що не підсвічується. Пристосування даного типу позначаються традиційним для оптики індексом з двох чисел, перше з яких відповідає кратності, друге — діаметру об'єктива — наприклад, 5х24.

— З точковою наводкою (LED). Даний різновид шукачів за принципом дії аналогічний коліматорним прицілам: обов'язковим елементом конструкції є оглядове віконце (у вигляді характерного скельця в рамці), на яке проєктується мітка від джерела світла. Ця мітка може мати вигляд як точки, так і іншої фігури — перехрестя, кільця з точкою тощо. Будова подібного шукача така, що положення мітки у вікні залежить від положення ока спостерігача, однак ця мітка завжди вказує на точку, у яку спрямовано телескоп. LED-шукачі зручніше оптичних в тому сенсі, що користувачеві не доводиться наближати око впритул до окуляра — мітка непогано видима на відстані 20 – 30 см, що полегшує наведення в деяких ситуаціях (наприклад, якщо спостережуваний об'єкт розташований близько до зеніту). Крім того, подібні пристосування відмінно підходять для роботи з темним небом. Вони зазвичай не мають збільшення, однак це не можна назвати однозначним недоліком — для шукача велике поле зору часто буває важливіше наближення. А ось з однозначних практичних недоліків варто відзначити необхідність джерела живлення (звичайно батарейок) — без них система перетворюється на непотрібне скельце. Крім того, коліматори загалом помітно дорожче класичної оптики, а на тлі освітленого неба мітка може губитися.

Зазначимо, що існують телескопи, що взагалі не мають шукачів — це моделі з невеликим діаметром об'єктива, в яких мінімальна кратність (див. вище) невелика і забезпечує досить широке поле зору.
Динаміка цін
Sigeta Volans 70/400 часто порівнюють