Тест Passmark CPU Mark
Результат, показаний процесором ноутбука в тесті Passmark CPU Mark.
Passmark CPU Mark — комплексний тест, більш детальний і достовірний, ніж популярний 3DMark06 (див. вище). Він перевіряє не тільки ігрові можливості CPU, але і його продуктивність в інших режимах, на підставі чого і виводить загальний бал; за цим балом можна досить достовірно оцінити процесор загалом (чим більше балів - тим вища продуктивність).
Об'єм оперативної пам'яті
Об'єм оперативної пам'яті (ОЗП чи RAM), фактично встановленої в ноутбуці.
Обсяг ОЗП одна із найважливіших показників, характеризуючих загальну продуктивність системи. Чим більше оперативної пам'яті встановлено в ноутбуці - тим краще він справлятиметься з «важкими» ресурсомісткими програмами, і тим більше завдань можуть виконуватися на ньому одночасно без «гальм» і збоїв.
На сьогоднішній день за необхідний мінімум вважається
4 ГБ ОЗП. Об'єму в
8 ГБ зазвичай вистачає для комфортного побутового використання та нескладних ігор,
16 ГБ та
32 ГБ – для обертання ресурсомістких додатків та впевненого запуску сучасних ігор. А в розвинених геймерських і професійних лептопах зустрічаються і великі обсяги ЗОЗУ -
64 ГБ і навіть більше.
Зазначимо, що багато моделей ноутбуків дають змогу збільшити наявну кількість RAM; докладніше див. «Об'єм, що максимально встановлюється».
Інтерфейс накопичувача M.2
Інтерфейс підключення, що використовується встановленим в ноутбуці SSD-модулем з роз'ємом M.2 (див. «Тип накопичувача»).
Однією з особливостей роз'єма M.2 і накопичувачів під нього є те, що вони можуть використовувати два різних інтерфейси підключення: PCI-E (в тому чи іншому різновиді) або SATA. Підкреслимо, що в даному пункті зазначаються дані SSD-модуля; в самому роз'ємі можуть передбачатися й інші варіанти інтерфейсу, у тому числі більш прогресивні — див. «Інтерфейс роз'єма M.2» (наприклад, накопичувач з підключенням
PCI-E 3.0 може бути розміщений в роз'ємі, що підтримує також більш швидкий
PCI-E 4.0). Однак у будь-якому разі роз'єм підключення зазвичай дає можливість реалізувати всі можливості встановленого накопичувача; так що даний пункт дає змогу цілком достовірно оцінити можливості штатного модуля M.2.
Що стосується конкретних інтерфейсів, то в наш час можна зустріти переважно такі варіанти:
— SATA 3. Інтерфейс SATA першопочатково був створений для традиційних жорстких дисків. Третя версія цього інтерфейсу є останньою; вона забезпечує швидкість передачі даних 600 МБ/с. Це значно менше, ніж у PCI-E, і в цілому дуже небагато за мірками SSD-накопичувачів. Тому M.2-підключення з використанням SATA характерне переважно для недорогих модулів початкового рівня. Тим не менше, навіть такі носії в цілому працюють швидше більшості HDD.
— PCI-E. Універсальний інт
...ерфейс для підключення внутрішньої периферії. Забезпечує в цілому вищі швидкості, ніж SATA, завдяки чому краще підходить для SSD-модулів: теоретично PCI-E дає змогу реалізувати весь потенціал твердотільних накопичувачів, навіть найшвидших. На практиці ж підтримувана швидкість передачі даних може бути різною — залежно від версії інтерфейсу і числа ліній (каналів передачі даних). Ось варіанти, найактуальніші для сучасних ноутбуків:
- PCI-E 3.0 2x. Підключення з використанням 2 ліній PCI-E версії 3.0. Ця версія забезпечує швидкість близько 1 ГБ/с на лінію; відповідно, дві лінії дають максимум трохи менше ніж в 2 ГБ/с.
- PCI-E 3.0 4x. Підключення з використанням 4 ліній PCI-E версії 3.0. Забезпечує максимальну швидкість близько 4 ГБ/с.
- PCI-E 4.0 4x. Підключення з використанням 4 ліній PCI-E версії 4.0. У цій версії пропускна здатність, в порівнянні з PCI-E 3.0, була збільшена вдвічі — таким чином, 4 лінії дають максимальну швидкість близько 8 МБ/с.
Зазначимо, що у разі роз'ємів M.2 різні варіації PCI-E зазвичай цілком сумісні між собою — хіба що швидкість підключення при роботі з «нерідним» роз'ємом буде обмежуватися можливостями найповільнішого компонента. Наприклад, при підключенні SSD-модуля PCI-E 3.0 4x в слот PCI-E 3.0 2x ця швидкість буде відповідати можливостям роз'єма, а при підключенні до PCI-E 4.0 4x — можливостям накопичувача.Інтерфейс роз'єму M.2
Інтерфейс основного роз'єму M.2, передбаченого в ноутбуці.
Основним в даному разі вважається роз'єм, в якому встановлений накопичувач SSD M.2 (див. «Тип накопичувача»). Інтерфейс самого накопичувача вказується окремо (див. вище), а інтерфейс роз'єму уточнюється в тому разі, якщо роз'єм підтримує більш прогресивний тип підключення, ніж встановлений в нього пристрій. В якості прикладу можна навести таку ситуацію: сам пристрій працює за стандартом SATA або PCI-E 3.0 2x (див. «Інтерфейс накопичувача M.2» вище), а роз'єм на платі здатний працювати з інтерфейсом PCI-E 3.0 4x.
Подібна інформація буде корисна передусім для оцінки можливостей з апгрейду ноутбука (з заміною штатного SSD-модуля на більш швидкий). В наш час в цьому пункті можна зустріти переважно такі варіанти:
— PCI-E 3.0 2x. Фактично — найбільш скромний стандарт PCI-E, що зустрічається в M.2-портах сучасних ноутбуків: підключення з використанням 2 ліній PCI-E версії 3.0. Ця версія забезпечує швидкість близько 1 ГБ/с на лінію; відповідно, дві лінії дають максимум трохи менше ніж 2 ГБ/с.
— PCI-E 3.0 4x. Підключення з використанням 4 ліній PCI-E версії 3.0. Забезпечує максимальну швидкість близько 4 ГБ/с.
— PCI-E 4.0 4x. Підключення з використанням 4 ліній PCI-E версії 4.0. У цій версії пропускна здатність, в порівнянні з PCI-E 3.0, була збільшена вдвічі — таким чином, 4 лінії дають максимальну швидкість близько 8 ГБ/с.
— PCI-E. Підключе...ння по PCI-E, для якого виробник не уточнив докладні дані (версію та кількість ліній).
Нагадаємо, що в разі роз'ємів М.2 різні варіанти PCI-E цілком сумісні між собою — хіба що швидкість буде обмежуватися можливостями більш повільного компонента. На практиці це означає, що, приміром, у роз'єм М.2 з інтерфейсом PCI-E 3.0 4x цілком можна підключити накопичувач під PCI-E 3.0 2x або PCI-E 4.0 4x; у першому варіанті швидкість буде обмежена можливостями накопичувача, у другому — можливостями роз'єму.
Wi-Fi
Стандарти Wi-Fi підтримуються ноутбуком.
У сучасних лептопах найчастіше зустрічаються модулі бездротового зв'язку з підтримкою стандартів
Wi-Fi 5 (802.11ac),
Wi-Fi 6 (802.11ax),
Wi-Fi 6E (802.11ax),
Wi-Fi 7 (802.11be). Більш ранні стандарти фігурують нечасто; насамперед, це Wi-Fi 4 (802.11n), що забезпечує сумісність ноутбука із застарілим бездротовим обладнанням. Ось особливості кожного з цих стандартів:
- Wi-Fi 5 (802.11ac). Стандарт, представлений у 2013 році. Працює виключно на частоті 5 ГГц, через що сумісний лише з Wi-Fi 4 та новими версіями. Забезпечує теоретичний максимум швидкості до 1 Гбіт/с при одноканальному підключенні і до 6 Гбіт/с при використанні кількох каналів у форматі MIMO, споживає значно менше енергії, ніж попередник.
- Wi-Fi 6 (802.11ax). Стандарт, розроблений як безпосередній розвиток та вдосконалення Wi-Fi 5. Апріорі він працює на стандартних частотах 2.4 ГГц і 5 ГГЦ (у тому числі з обладнанням більш ранніх стандартів), але при необхідності може підключати додаткові смуги в діапазоні від 1 до 7 ГГц. Максимальна швидкість передачі даних збільшилася до 10 Гбіт/с, проте основною перевагою Wi-Fi 6 стало не це, а подальша оптимізація одночасної роботи кількох пристроїв на одному каналі. Wi-Fi 6 забезпечує мінімальне падіння швидкості за умови високого завантаження каналів.
...- Wi-Fi 6E (802.11ax). Стандарт Wi-Fi 6E має технічну назву 802.11ax. Але на відміну від базового Wi-Fi 6, який називається аналогічним чином, у ньому передбачається робота у додатковому незавантаженому діапазоні 6 ГГц. Загалом стандарт використовує 14 різних діапазонів частот, пропонуючи високу пропускну здатність в найбільш людних місцях з безліччю активних підключень. І він зворотно сумісний із попередніми версіями Wi-Fi.
- Wi-Fi 7 (802.11be). Технологія, як і попередня Wi-Fi 6E, здатна працювати у трьох частотних діапазонах: 2.4 ГГц, 5 ГГц та 6 ГГц. При цьому максимальну ширину смуги пропускання в Wi-Fi 7 наростили зі 160 МГц до 320 МГц - чим ширший канал, тим більше даних він може передати. У стандарті IEEE 802.11be використовується модуляція 4096-QAM, що дозволяє вміщувати більше символів в одиниці передачі даних. З Wi-Fi 7 можна вичавити максимальну теоретичну швидкість обміну інформацією до 46 Гбіт/с. У контексті застосування бездротового підключення для стрімінгу та відеоігор дуже цікавою є впроваджена розробка MLO (Multi-Link Operation). З її допомогою можна агрегувати кілька каналів у різних діапазонах, що суттєво зменшує затримки при передачі даних, забезпечує низький та стабільний пінг. А мінімізувати затримки зв'язку за умови багатьох підключених клієнтських пристроїв покликана технологія Multi-RU (Multiple Resource Unit).Живлення по USB-C (Power Delivery)
Наявність у ноутбуці хоча б одного роз'єму USB-C з підтримкою технології
Power Delivery.
Нагадаємо, USB-C може застосовуватися для підключення за стандартом USB 3.2 (gen1 або gen2), USB4 та Thunderbolt (v3 і v4). Детальніше про всі ці інтерфейси див. вище. А підтримка Power Delivery як мінімум означає, що такий роз'єм здатний видавати на підключений пристрій підвищену потужність живлення — до 100 Вт. Завдяки цьому навіть досить «ненажерлива» периферія може працювати без окремого джерела енергії. Крім того, якщо від USB-C заряджається гаджет, що підтримує Power Delivery (або сумісну з нею технологію швидкої зарядки) — процес зарядки значно прискорюється. При цьому однією з особливостей даної технології є те, що вона дає змогу ноутбуку погоджувати потужність, що видається, з підключеним пристроєм — щоб вона була достатньою і водночас не викликала перевантажень.
Також відзначимо, що USB-C у деяких моделях використовується для зарядки акумулятора в самому лептопі. У таких ситуаціях Power Delivery сприяє зменшенню часу такої зарядки — зрозуміло, за наявності сумісного зарядного пристрою. Проте наявність такої можливості варто уточнювати окремо.
Швидка зарядка
Наявність в ноутбуці
функції швидкої зарядки. Також у примітках до цього пункту можуть уточнюватися конкретні можливості такої зарядки — наприклад, «50 % за 40 хвилин».
Загальні особливості даної функції очевидні вже з назви — вона помітно зменшує час зарядки батареї в порівнянні зі стандартною процедурою. Для цього потрібні спеціалізовані зарядні пристрої, однак такі ЗП нерідко постачаються в комплекті з лептопом. Та й пошук стороннього зарядника не становить особливих проблем — достатньо переконатися, що він підтримує ту ж технологію швидкої зарядки, що і сам пристрій (або хоча б одну з сумісних).
Докладні дані про різні технології швидкої зарядки можна знайти в спеціальних джерелах. Тут же варто окремо торкнутися даних про часткову зарядку, які можуть наводитися у примітках – на кшталт згаданих вище «50 % за 40 хвилин». При оцінюванні цих даних варто враховувати, що швидкість зарядки батареї нерівномірна: вище всього вона на перших відсотках заряду, далі процес поступово сповільнюється. З цього випливають два практичні нюанси. По-перше, інформація про швидкість часткової зарядки актуальна тільки при умові зарядки акумулятора з нуля. У нашому прикладі це означає, що від 0 до 50 % батарея дійсно зарядиться за 40 хвилин, але ось для зарядки, скажімо, від 20 до 70 % — часу знадобиться дещо більше. Другий нюанс полягає в тому, що час повної зарядки не буде прямо пропорційним зазначеному часу часткової зарядки: знову ж т
...аки, якщо взяти наш приклад, «50 % за 40 хвилин» не означають «100 % за 80 хвилин» — останнє займе більше часу. На практиці подібні нюанси найчастіше непринципові, однак вони можуть виявитися критичними в тих випадках, коли час зарядки сильно обмежений.Комплектний блок живлення
Максимальна потужність блоку живлення у ВАТ, від якого забезпечується енергопостачання ноутбука. Зазначимо, що в даному випадку вказується саме максимальний рівень потужності, а досягається такий лише при виконанні найбільш енерговитратних завдань на кшталт проведення часу в іграх, рендерингу відео і т.п. В решту часу блок живлення споживає на порядок менше потужності. Цей параметр може бути корисним при підрахунку навантаження у разі підключення портативного комп'ютера до «безперебійника» (ДБЖ) або інших засобів автономного живлення. Самостійно підбираючи блок живлення, необхідно купувати його з аналогічними оригінальним блоком параметрами або невеликим запасом потужності у велику сторону.
Матеріал корпуса
Основний матеріал, з якого виконаний корпус ноутбука.
В сучасних лептопах можуть використовуватися такі матеріали, як пластик (переважно мова про
матовий пластик),
алюміній,
магнієвий сплав,
вуглецеве волокно і навіть скло. Ці матеріали зустрічаються як окремо, наприклад і в різних поєднаннях; найбільш поширений випадок —
алюміній з пластиком, але існують і більше специфічні комбінації. Ось більше докладний опис найбільш актуальних варіантів:
— Матовий пластик. Пластик з матовою (не блискучою) поверхнею є одним з найбільш популярних у наш час матеріалів для ноутбучних корпусів. Це обумовлено, з одного боку, низькою вартістю, з іншого — непоганими практичними характеристиками. Так, подібному корпусу можна надати будь-якого кольору і нанести на нього будь-який малюнок. Міцність пластику нижче, ніж у металів або вуглеволокна, однак її зазвичай більше ніж достатньо для повсякденного використання. А невелика вага не тільки сама по собі є перевагою — вона ще й дає змогу зробити стінки корпуса досить товстими; в результаті пластикові корпуси нерідко зустрічаються навіть серед захищених від ударів моделей. Що стосується конкретно матової поверхні, то вона сама по собі виглядає тьмяніше, ніж глянцева, зате не так схильна до забруднень. Зокрема, на ній практично не помітні сліди від паль
...ців і долонь; та й подряпини, яким піддається пластик, виділяються не так явно, як на глянці. А яскравого зовнішнього вигляду пристрою можна надати за рахунок інших конструктивних рішень — наприклад, підсвічування клавіатури (див. вище).
— Алюміній. З практичної точки зору алюмінієві сплави поєднують в собі легкість і високу міцність; крім того, метал добре проводить тепло, що покращує ефективність роботи систем охолодження. Більшість таких корпусів має характерний сірий відтінок, який достатньо стильно виглядає навіть без спеціального фарбування; а в окремих моделях алюмінію можуть додатково надавати той чи інший колір. Головний недолік цього матеріалу — більш висока вартість, ніж у пластику; як наслідок, він застосовується переважно в пристроях середнього і топового класів.
— Магнієвий сплав. Подібні сплави по міцності перевершують навіть описаний вище алюміній, при цьому вони мають порівняно невелику вагу і відмінно відводять тепло. Однак і коштує цей матеріал недешево. Тому він застосовується досить рідко, а в чистому вигляді — ще рідше; більшою популярністю користуються поєднання магнієвого сплаву з іншими, зазвичай більше доступними матеріалами (детальніше див. нижче).
— Алюміній / пластик. Поєднання пластикових і алюмінієвих елементів в одному корпусі. З металу, як правило, виконуються деталі, що піддаються найбільшим навантаженням, з пластику — інші частини конструкції. Ці матеріали докладніше описані вище, а їх поєднання дає змогу об'єднати переваги і частково компенсувати недоліки. Зокрема, подібні комбіновані корпуси обходяться дешевше суцільнометалевих і водночас надійніше пластикових; до того ж їм простіше надати яскравого зовнішнього вигляду, ніж виробам з алюмінію або магнію. Дане поєднання можна зустріти навіть серед порівняно недорогих ноутбуків, хоча більшість металопластикових моделей все ж належать до більш прогресивних категорій.
— Вуглецеве волокно. Також відоме як «карбон». Як правило, використовується у вигляді композита — основа з вуглеволокна доповнюється наповнювачем з пластику. Карбон належить до матеріалів преміумкласу: він відрізняється дуже високою міцністю і водночас невеликою вагою. А темний колір і характерний візерунок на поверхні надають таким корпусам стильного зовнішнього вигляду. Однак і коштує вуглецеве волокно дуже недешево — помітно дорожче, ніж навіть алюміній та магній, не кажучи вже про пластик. Тому подібні корпуси є характерною ознакою ноутбуків топового сегмента. Також відзначимо, що карбон погано переносить удари; у світлі цього, а також для зниження вартості, він нерідко застосовується в поєднанні з металами (детальніше див. нижче).
— Алюміній / магнієвий сплав. Корпуси, що поєднують в собі два види металів. Як правило, основна частина такого корпуса робиться з алюмінію, а окремі, найбільш важливі деталі — з магнію. Це дає змогу дещо знизити вартість і вагу порівняно з корпусами з чистого магнієвого сплаву, і водночас забезпечити більшу міцність і надійність, ніж при використанні алюмінію. Більш рідкісний і специфічний варіант — пристрої «2-в-1» (див. «Тип»), де верхня половина робиться з більше легкого алюмінію (для зручності при перенесенні), а нижня — з міцного магнію.
— Алюміній / вуглецеве волокно. Корпуси, що поєднують в собі елементи з алюмінію і вуглеволокна. Конкретний набір деталей з того і іншого матеріалу може бути різним, проте верхня сторона нижньої половини пристрою (там, де знаходяться тачпад і клавіатура) найчастіше виготовляються з карбону. Така поверхня не тільки непогано виглядає, але нерідко ще й виявляється більше приємною на дотик, ніж алюмінієва. Що стосується загальних особливостей, то поєднання алюмінію і вуглеволокна може використовуватися як з дизайнерських міркувань, та й в практичних цілях — щоб компенсувати чутливість карбону до точкових ударів. В останньому випадку елементи корпуса, найбільш схильні до таких «неприємностей», виконуються з алюмінію. Крім того, заміна частини вуглеволокна на метал трохи знижує загальну вартість (однак збільшує вагу).
— Магнієвий сплав / вуглецеве волокно. Поєднання, аналогічне описаному вище алюмінію з карбоном, з поправкою на особливості магнієвих сплавів. Нагадаємо, такі сплави, з одного боку, міцніше і надійніше алюмінію, з іншого — дещо важче і дорожче. Докладніше про властивості вуглецевого волокна також див. вище. Загалом це помітно більш рідкісний варіант, ніж алюміній+карбон: подібні корпуси обходяться дорожче, при цьому значущих переваг вони майже не мають.
— Алюміній / скло. Досить рідкісний і навіть екзотичний варіант; фактично — єдиний випадок, коли в якості матеріалу для ноутбучних корпусів застосовується скло. Зустрічається в окремих моделях преміумкласу, в тому числі іміджевих. Алюмінієвий корпус (див. вище) в таких моделях доповнюється накладкою зі спеціального високоміцного скла — зазвичай на зовнішній частині кришки, з протилежної сторони від екрану. Таке скло ще краще протистоїть подряпинам, ніж металева поверхня, до того ж воно додатково покращує зовнішній вигляд. Втім, цим практичні переваги такого поєднання, по суті, і обмежуються, так що воно використовується переважно як оригінальний дизайнерський хід.