Tryb nocny
Polska
Katalog   /   Komputery   /   Monitory

Porównanie LG UltraGear 27GP95R 27 " czarny vs LG UltraGear 27GP850 27 " czarny

Dodaj do porównania
LG UltraGear 27GP95R 27 "  czarny
LG UltraGear 27GP850 27 "  czarny
LG UltraGear 27GP95R 27 " czarnyLG UltraGear 27GP850 27 " czarny
od 2 589 zł
Produkt jest niedostępny
od 1 594 zł
Wkrótce w sprzedaży
Opinie
0
0
3
0
TOP sprzedawcy
Rodzajmonitor gamingowymonitor gamingowy
Przekątna27 "27 "
Wyświetlacz
Rodzaj matrycyIPSIPS
Powłoka ekranuantyrefleksyjnaantyrefleksyjna
Rozdzielczość3840x2160 (16:9)2560x1440 (16:9)
Rozmiar piksela0.16 mm0.23 mm
Czas reakcji (GtG)1 ms1 ms
Częstotliwość odświeżania160 Hz165 Hz
Kąt widzenia w pionie178 °178 °
Kąt widzenia w poziomie178 °178 °
Jasność400 cd/m²400 cd/m²
Kontrast statyczny1 000:11 000:1
Głębia koloru1.07 mld kolorów (8 bit + FRC)
Przestrzeń barw (DCI P3)90 %98 %
Obsługa HDRDisplayHDR 600DisplayHDR 400
Złącza
Transmisja wideo
DisplayPort v 1.4
HDMI 2 szt.
v 2.1
DisplayPort v 1.4
HDMI 2 szt.
 
Złącza (opcjonalnie)
wyjście mini Jack (3.5 mm)
wyjście mini Jack (3.5 mm)
Funkcje i możliwości
Funkcje i możliwości
Flicker-Free
AMD FreeSync Premium Pro
NVIDIA G-Sync Compatible
Flicker-Free
AMD FreeSync Premium
NVIDIA G-Sync Compatible
Tryb portretowy
Obrót ekranu
Regulacja wysokości
Hub USB 3.x
Szybkie ładowanie
Funkcje gamingowe
celownik
podświetlenie ciemnych obszarów
celownik
podświetlenie ciemnych obszarów
Dane ogólne
Uchwyt ściennyVESA100x100 mmVESA100x100 mm
Pobór mocy65 W48 W
Klasa energetyczna (new)G
Zewnętrzny zasilacz
Wymiary (SxWxG)609x465x291 mm614x576x291 mm
Waga7.9 kg6.3 kg
Kolor obudowy
Data dodania do E-Katalogstyczeń 2023maj 2021

Rozdzielczość

Natywna rozdzielczość monitora. W sytuacji idealniej rozdzielczość sygnału wideo powinna być taka sama, wtedy jakość obrazu na ekranie będzie maksymalna.

Ogólnie rzecz biorąc, im wyższa rozdzielczość, tym wyższa szczegółowość i bardziej zaawansowany ekran, jednak tym drożej będzie kosztować (przy pozostałych warunkach równych) i tym większa moc karty graficznej będzie wymagana do poprawnej pracy z tą rozdzielczością. Jeśli chodzi o konkretne wartości, we współczesnych monitorach są one dość zróżnicowane, jednak wszystkie rozdzielczości można podzielić na kilka ogólnych kategorii:

- HD (720). Ekrany odpowiednie dla wideo HD 1280x720. Warto zauważyć, że w tej kategorii znajdują się również modele o rozdzielczości 1024x768 - wskaźnik ten jest nieco mniejszy niż jest to konieczne do wyświetlenia HD w oryginalnym rozmiarze, ale jakość obrazu HD na takim ekranie jest wciąż dość wysoka. Najpopularniejszą opcją wśród monitorów HD jest 1366x768, są też modele 1280x768, 1280x800 i nie panoramiczne (5:3) 1280x1024.

- Full HD (1080). Monitory do wyświetlania obrazu w formacie Full HD. Klasyczna, najpopularniejsza wersja takiej rozdzielczości to 1920x1080 (format 16:9), jednak wśród monitorów są inne opcje, w tym tak specyficzne, jak ultraszeroki format (32:9) 3840x1080, a także 1600x1200 (nie mieści się w nim klatka 19...20x1080 w szerokości, ale ta rozdzielczość jest nadal uważana za Full HD). Obecnie Full HD stanowi dobry kompromis między jakością obrazu, kosztem ekranu i wymaganiami karty graficznej. W rezultacie właśnie ten format jest najpopularniejszy wśród współczesnych monitorów.

- Quad HD. Rodzaj pośredniej opcji między popularnym Full HD a zaawansowanym, wymagającym Ultra HD 4K. Obejmuje rozdzielczości od 1920x1440 do 3200x2400, chociaż większość współczesnych monitorów Quad HD mieści się w węższym zakresie - od 2560x1440 do 3840x1600. Taki ekran może być dobrą opcją dla tych, dla których „Full HD to za mało, ale 4K to dużo”.

- Ultra HD (4K). Ten standard zakłada poziomy rozmiar klatki wynoszący około 4000 px, ale określone rozdzielczości mogą się różnić. Popularne opcje dostępne w monitorach to 3840x2160, 4096x2160 i 4096x2304. Ogólnie rzecz biorąc, UHD 4K wytwarza na ekranie 4 razy więcej px niż Full HD; takie rozdzielczości są typowe dla monitorów wysokiej klasy i najczęściej łączy się je z dużą przekątną - od 27” (choć są wyjątki).

- Ultra HD (5K). Jeszcze bardziej zaawansowany standard niż UHD 4K, przy założeniu poziomego rozmiaru klatki około 5000 px - na przykład 5120x2160. Jest używany niezwykle rzadko, głównie w profesjonalnych ekranach z najwyższej półki.

- 8K. Dalszy, po 5K, rozwój standardów HD, zapewniający klatkę o rozmiarze poziomym około 8000 - na przykład jedna z opcji rozdzielczości 8K w monitorach to 7680x4320. Pozwala uzyskać niezwykle wyraźne i szczegółowe obrazy, ale takie monitory o wysokiej rozdzielczości są bardzo drogie, a źródło sygnału w takiej rozdzielczości nie jest tak łatwe do znalezienia. Dlatego do tej pory na rynku jest tylko kilka monitorów 8K.

Rozmiar piksela

Rozmiar jednego punktu (piksela) na ekranie monitora. Parametr ten związany jest z maksymalną rozdzielczością monitora i jego przekątną - im wyższa rozdzielczość, tym mniejszy rozmiar piksela (przy tej samej przekątnej) i odwrotnie, im większa przekątna, tym większy rozmiar jednego piksela (przy tej samej rozdzielczości). Im mniejszy rozmiar jednego piksela, tym wyraźniejszy obraz będzie wyświetlany na monitorze, tym mniej zauważalna będzie jego ziarnistość, co jest szczególnie ważne na dużych monitorach. Z drugiej strony, mały rozmiar piksela stwarza dyskomfort podczas pracy z drobnymi szczegółami i tekstem - dotyczy to głównie monitorów o małej przekątnej.

Częstotliwość odświeżania

Maksymalna częstotliwość odświeżania obsługiwana przez monitor przy zalecanej (maksymalnej) rozdzielczości.

Im wyższa liczba klatek na sekundę, tym płynniejszy ruch będzie się pojawiał na ekranie, tym mniej zauważalne będzie szarpanie i rozmycie. Oczywiście rzeczywista jakość obrazu zależy również bezpośrednio od sygnału wideo, ale do normalnego oglądania wideo o dużej częstotliwości odświeżania monitor musi ją również obsługiwać.

Dokonując wyboru według tego parametru należy mieć na uwadze, że przy rozdzielczościach niższych niż maksymalna obsługiwana częstotliwość odświeżania może być wyższa. Na przykład model z matrycą 1920x1080 i deklarowaną częstotliwością odświeżania 60 Hz przy zmniejszonej rozdzielczości może dać 75 Hz; ale częstotliwość odświeżania 75 Hz jest podawana w specyfikacji tylko wtedy, gdy jest obsługiwana przez monitor o własnej (maksymalnej) rozdzielczości.

Zwróć również uwagę, że wysoka częstotliwość odświeżania jest szczególnie ważna w przypadku modeli do gier (patrz „Typ”). W większości z nich wskaźnik ten wynosi 120 Hz i więcej; wielu uważa monitory o częstotliwości 144 Hz za najlepszą opcję pod względem stosunku ceny do jakości, ale są też wyższe wartości - 165 Hz i 240 Hz. A monitory o częstotliwości 100 Hz...mogą być zarówno niedrogimi modelami do gier, jak i zaawansowanymi modelami domowymi.

Można oszacować wszystkie częstotliwości odświeżania, z którymi ten monitor może pracować, na podstawie częstotliwości skanowania pionowego zadeklarowanej w specyfikacji (patrz poniżej).

Głębia koloru

Głębia koloru obsługiwana przez monitor.

Parametr ten charakteryzuje liczbę odcieni, które może wyświetlić ekran. I tu warto przypomnieć, że obraz we współczesnych monitorach budowany jest w oparciu o 3 podstawowe kolory - czerwony, zielony, niebieski (schemat RGB). Liczba bitów jest wskazana nie dla całego ekranu, ale dla każdego koloru podstawowego. Na przykład 6 bitów (minimalna głębia kolorów dla współczesnych monitorów) oznacza, że ekran jest w stanie wyprodukować 2^6, czyli 64 odcienie czerwieni, zieleni i koloru niebieskiego; całkowita liczba odcieni wyniesie 64*64*64 = 262 144 (0,26 mln). 8-bitowa głębia kolorów (256 odcieni dla każdego koloru podstawowego) daje już łącznie 16,7 mln kolorów; a dzisiejsze najbardziej zaawansowane monitory obsługują 10-bitowe kolory, umożliwiając pracę z ponad miliardem odcieni.

Osobna wzmianka dotyczy ekranów z obsługą technologii FRC; obecnie można znaleźć modele oznaczone „6 bit + FRC” i „8 bit + FRC”. Technologia ta została opracowana w celu poprawy jakości obrazu w sytuacjach, gdy przychodzący sygnał wideo ma większą głębię kolorów niż ekran - na przykład gdy 10-bitowe wideo jest podawane na 8-bitową matrycę. Jeśli taki ekran obsługuje FRC, obraz na nim będzie zauważalnie lepszy niż na zwykłym 8-bitowym monitorze (choć nieco gorszy niż na pełnoprawnym 10-bitowym, ale ekrany „8...-bit + FRC” są dużo tańsze).

Wysoka głębia kolorów jest ważna przede wszystkim w przypadku profesjonalnej pracy z grafiką i innych zadań wymagających dużej dokładności odwzorowania barw. Z drugiej strony, takie cechy znacząco wpływają na koszt monitora. Ponadto warto pamiętać, że jakość odwzorowania barw zależy nie tylko od głębi kolorów, ale także od innych parametrów - w szczególności od przestrzeni barw (patrz poniżej).

Przestrzeń barw (DCI P3)

Przestrzeń barw monitora zgodnie z modelem kolorów DCI P3.

Dowolna przestrzeń barw jest wskazywana w procentach, ale nie w odniesieniu do całej gamy widocznych kolorów, ale w odniesieniu do warunkowej przestrzeni barw (modelu kolorów). Wynika to z faktu, że żaden współczesny ekran nie jest w stanie wyświetlić wszystkich kolorów widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości monitora, tym lepsze odwzorowanie barw.

DCI P3 to profesjonalny model kolorystyczny używany głównie w kinach cyfrowych. Jest zauważalnie bardziej rozbudowany niż standardowe sRGB, co daje wyższą jakość i dokładniejsze kolory. W związku z tym wartości procentowe są mniejsze - na przykład 115% pokrycia w sRGB odpowiada około 90% pokrycia w DCI P3; w najbardziej zaawansowanych współczesnych monitorach pokrycie według tego standardu wynosi 98 - 100%. Jednocześnie obsługa DCI-P3 nie jest tania, dlatego znajduje się głównie w wysokiej klasy monitorach profesjonalnych i gamingowych.

Obsługa HDR

Monitor obsługuje technologię High Dynamic Range - HDR.

Ta technologia ma na celu rozszerzenie zakresu jasności odtwarzanej przez monitor; mówiąc prościej, model HDR będzie wyświetlać jaśniejszą biel i ciemniejszą czerń niż „zwykły” wyświetlacz. W praktyce oznacza to znaczną poprawę jakości odwzorowania barw. Z jednej strony, HDR zapewnia bardzo „żywy” obraz, zbliżony do tego, co widzi ludzkie oko, z dużą ilością odcieni i tonów, których konwencjonalny ekran nie jest w stanie przekazać; z drugiej strony, technologia ta pozwala uzyskać bardzo jasne i bogate kolory.

We współczesnych monitorach HDR mogą się używać oznaczenia według standardu DisplayHDR. Ten standard bierze pod uwagę szereg parametrów, które określają ogólną jakość wydajności HDR: jasność, przestrzeń barw, głębię kolorów itp. Zgodnie z wynikami pomiarów, monitorowi przypisano jedno z oznaczeń: DisplayHDR 400 to stosunkowo skromne możliwości HDR, DisplayHDR 600 - poziom średni, DisplayHDR 1000 - powyżej średniego, DisplayHDR 1400 - zaawansowany. Jednocześnie sam brak oznaczenia DisplayHDR nic nie znaczy: po prostu nie każdy monitor HDR jest testowany zgodnie z tym standardem.

Należy pamiętać, że do pełnego wykorzystania HDR potrzebny jest nie tylko odpowiedni monitor, ale także treści (filmy, programy telewizyjn...e itp.), pierwotnie stworzone w HDR. Ponadto istnieje kilka różnych technologii HDR, które nie są ze sobą kompatybilne. Dlatego kupując monitor z tą funkcją, bardzo pożądane jest wyjaśnienie, którą wersję obsługuje.

Transmisja wideo

VGA. Złącze przeznaczone do przesyłania analogowych sygnałów wideo już w czasach monitorów CRT (specjalnie do nich). Dziś jest uważane za przestarzałe i stopniowo wycofuje się z użytkowania - w szczególności ze względu na małą przepustowość, która nie pozwala w pełni współpracować z treściami HD, a także podwójną konwersję sygnału przy zastosowaniu VGA w monitorach LCD (co może stać się potencjalnym źródłem zakłóceń).

DVI. Złącze do przesyłania sygnału wideo zaprojektowane specjalnie dla urządzeń LCD, w tym monitorów. Chociaż skrót DVI pierwotnie oznacza „cyfrowy interfejs wideo”, interfejs ten umożliwia również analogową transmisję danych. W rzeczywistości istnieją trzy główne typy DVI: analogowe, kombinowane i cyfrowe. Pierwsza odmiana w nowoczesnym sprzęcie komputerowym jest prawie nieużywana (funkcję tę pełni tak naprawdę złącze VGA), a złącze czysto cyfrowe - DVI-D - jest wskazane osobno w naszym katalogu (patrz poniżej). Dlatego jeśli specyfikacja monitora wskazuje „po prostu DVI” - najprawdopodobniej chodzi o kombinowane złącze DVI-I. Pod względem specyfikacji analogowego sygnału wideo jest ono zbliżone do opisanego powyżej VGA (a nawet kompatybilne z nim poprzez najprostszy adapter), pod względem możliwości cyfrowych - do DVI-D (jednokanałowego, a nie Dual Link). Jednak ze względu na rozprzestrzenianie się czysto cyfrowych standardów, DVI-I jest coraz rzadz...iej spotykane.

DVI-D. Odmiana interfejsu DVI opisanego powyżej, obsługująca wyłącznie cyfrowy format sygnału wideo. Standardowy (Single Link) interfejs DVI-D umożliwia transmisję wideo w rozdzielczościach do 1920x1080 przy częstotliwości odświeżania 75 Hz lub 1920x1200 przy częstotliwości odświeżania 60 Hz, co już wystarcza do pracy ze współczesnymi rozdzielczościami aż do Full HD. Dodatkowo istnieje dwukanałowa (Dual Link) wersja tego złącza, która ma zwiększoną przepustowość i pozwala na pracę z rozdzielczościami do 2560x1600 (przy 60 Hz; lub 2048x1536 przy 75 Hz). Odpowiednio konkretny rodzaj DVI-D zależy od rozdzielczości monitora. W takim przypadku jednokanałowy ekran można podłączyć do dwukanałowej karty graficznej, ale nie odwrotnie. Zauważamy również, że sytuacja jest podobna w przypadku złączy: porty Single Link i Dual Link różnią się nieco konstrukcją, a jednokanałowy kabel jest kompatybilny z dwukanałowym wejściem/wyjściem, ale znowu nie odwrotnie.

DisplayPort. Interfejs pierwotnie stworzony do transmisji wideo (jednak można go wykorzystać także do przesyłania sygnałów audio – w tym DisplayPort działa podobnie jak HDMI). Występuje w wielu modelach monitorów. Należy pamiętać, że monitory z wejściami DisplayPort są również kompatybilne z wyjściami Thunderbolt (za pośrednictwem adaptera).

Konkretne możliwości tego złącza zależą od jego wersji. We współczesnych monitorach spotyka się następujące wersje:
  • v.1.2. Najwcześniejsza z rozpowszechnionych w naszych czasach wersji, wydana w 2010 roku. To właśnie w niej po raz pierwszy wprowadzono takie funkcje, jak obsługa 3D i możliwość łączenia szeregowego wielu ekranów. Wersja 1.2 umożliwia przesyłanie wideo 5K z prędkością 30 klatek na sekundę, możliwa jest również praca z wyższymi rozdzielczościami (do 8K), ale z pewnymi ograniczeniami.
  • v.1.3. Wersja DisplayPort wydana w 2014 roku. Ma półtora razy większą przepustowość niż v.1.2 i pozwala na transmisję wideo 8K przy 30 kl./s, 5K - przy 60 kl./s i 4K - przy 120 kl./s. Dodatkowo ta wersja posiada funkcję Dual-mode, która umożliwia podłączenie do wyjść HDMI i DVI za pomocą najprostszych adapterów pasywnych.
  • v.1.4. W tej wersji maksymalna liczba klatek na sekundę przy pracy z jednym ekranem wzrosła do 120 kl/s dla standardu 8K i do 240 kl/s dla standardów 4K i 5K (dane mają być przesyłane z kompresją z wykorzystaniem technologii DSC – Display Stream Compression). Inne funkcje obejmują kompatybilność z HDR10 i możliwość jednoczesnego przesyłania do 32 kanałów audio.
  • v.2.1. Wersja 2022 roku wykorzystująca tę samą specyfikację warstwy fizycznej co USB4. Przepustowość interfejsu została podwojona w porównaniu z wersją 1.4 (do 80 Gbit/s, z czego 77,37 Gbit/s jest dostępne do przesyłania danych). Przy tym realizowano obsługę podłączenia wyświetlaczy o rozdzielczościach do 16K przy 60 kl./s, 8K przy 120 kl./s, 4K przy 240 Hz i 2K przy 480 Hz (bez dodatkowego wykorzystania technologii DSC – Display Stream Compression). Kable DP40 (40 Gb/s) mogą być dłuższe niż dwa metry, a kable DP80 (80 Gb/s) mogą mieć długość ponad jednego metra.


Mini Display Port. Zmniejszona wersja złącza DisplayPort opisanego powyżej, używana głównie w laptopach; szczególnie popularna w laptopach Apple. Ostatnio pojawił się trend zastępowania Mini Display Port uniwersalnym interfejsem Thunderbolt; jednak ten interfejs działa przez to samo złącze i zapewnia te same możliwości. Innymi słowy, monitory można podłączyć do Thunderbolt (wersji 1 i 2) za pomocą standardowego kabla miniDisplayPort, bez użycia adapterów (w przypadku v3 adapter jest nadal potrzebny).

— HDMI. Interfejs HDMI został pierwotnie zaprojektowany do przesyłania wideo o wysokiej rozdzielczości i wielokanałowego dźwięku w postaci cyfrowej za pomocą jednego kabla. Jest to obecnie najpopularniejszy z interfejsów podobnego przeznaczenia; wyjścia HDMI są praktycznie obowiązkowe zarówno w komputerowych kartach graficznych, jak i w centrach multimedialnych, odtwarzaczach DVD/Blu-ray i innych podobnych urządzeniach.

Obecność w monitorze kilku wyjść danego typu pozwala na podłączenie go do kilku źródeł sygnału jednocześnie — na przykład do komputera i tunera telewizji satelitarnej. W ten sposób możesz przełączać się między źródłami za pomocą ustawień nie tracąc czasu na bawienie się z kablami, a także użyć funkcji PBP.

Przy tym sam port ma różne wersje, a najbardziej popularne obecnie wersję to:
  • — v.1.4. Najwcześniejsza z aktywnie używanych obecnie wersja; pojawiła się w 2009 roku. Obsługuje rozdzielczości do 4096x2160 przy 24 kl./s, a w standardzie Full HD (1920x1080) liczba klatek na sekundę może osiągać 120 kl./s; możliwa jest także transmisja wideo 3D.
  • v.2.0. Wersja wprowadzona w 2013 roku jako olbrzymia aktualizacja standardu HDMI. Obsługuje wideo 4K z szybkością do 60 kl./s (stąd nazwa HDMI UHD), a także do 32 kanałów audio i do 4 strumieni audio jednocześnie. Ta wersja obsługuje także ultrawide 21:9.
  • v.2.1. Dość znacząca aktualizacja w stosunku do wersji 2.0, wprowadzona pod koniec 2017 roku. Dalsze zwiększenie przepustowości umożliwiło obsługę rozdzielczości do 8K przy 120 kl./s włącznie. Wprowadzono także ulepszenia dotyczące pracy z HDR. Należy zaznaczyć, że do korzystania ze wszystkich funkcji HDMI v 2.1 potrzebne są kable HDMI Ultra High Speed, chociaż podstawowe funkcje są też dostępne w przypadku zwykłych kabli.


USB C (DisplayPort AltMode). Inna odmiana interfejsu USB używanego do pracy z sygnałem wideo. Cechuje się małymi rozmiarami (niewiele większymi od microUSB) oraz posiada dwustronną konstrukcję, która pozwala na podłączenie wtyczki z dowolnej strony - to sprawia, że Type C jest wygodniejszy niż poprzednie standardy. Jednocześnie zauważamy, że taki monitor można początkowo zaprojektować do podłączenia do wyjścia USB C (przynajmniej taki kabel adaptera może być dostarczony w zestawie), ten punkt warto wyjaśnić osobno.

Interfejs Thunderbolt. Thunderbolt to protokół przesyłania danych (stosowany w urządzeniach Apple), którego przepustowość sięga 40 Gb/s. Sama wtyczka, podobnie jak prędkość, zależy od wersji: Thunderbolt v1 i v2 używają miniDisplayPort (patrz wyżej), monitory z wejściami Thunderbolt niekoniecznie są kompatybilne z oryginalnymi wyjściami miniDisplayPort - warto wyjaśnić tę kompatybilność osobno. Thunderbolt v3 jest oparty na złączu USB C (patrz wyżej).

Funkcje i możliwości

 

Pobór mocy

Nominalny pobór mocy monitora. Z reguły w tym punkcie wskazuje się maksymalną moc, jaką urządzenie może zużywać podczas normalnej pracy - czyli pobór mocy przy maksymalnej jasności, najwyższej głośności wbudowanych głośników itp. Rzeczywiste pobór mocy może być zauważalnie niższe, ale przy wyborze wszystko jedno lepiej jest skupić się na wartości podanej w specyfikacji.

Ogólnie rzecz biorąc, im niższy pobór mocy, tym oszczędniejsze jest urządzenie pod względem zużycia energii elektrycznej (przy pozostałych warunkach równych). Ponadto parametr ten może być przydatny przy wyborze zasilacza awaryjnego dla komputera stacjonarnego oraz w innych specyficznych sytuacjach, gdy wymagane jest dokładne określenie poboru mocy przez sprzęt.
Dynamika cen
LG UltraGear 27GP95R często porównują
LG UltraGear 27GP850 często porównują