Polska
Katalog   /   Komputery   /   Monitory

Porównanie LG UltraWide 34WQ60C 34.1 " czarny vs LG UltraWide 34WN80C 34 " czarny

Dodaj do porównania
LG UltraWide 34WQ60C 34.1 "  czarny
LG UltraWide 34WN80C 34 "  czarny
LG UltraWide 34WQ60C 34.1 " czarnyLG UltraWide 34WN80C 34 " czarny
od 2 812 zł
Wkrótce w sprzedaży
od 2 829 zł
Wkrótce w sprzedaży
TOP sprzedawcy
Rodzajmonitormonitor
Przekątna34.1 "34 "
Wyświetlacz
Zakrzywiony ekran
Promień krzywizny38001900
Rodzaj matrycyIPSIPS
Powłoka ekranubłyszcząca (antyrefleksyjna)błyszcząca (antyrefleksyjna)
Rozdzielczość3440x1440 (21:9)3440x1440 (21:9)
Rozmiar piksela0.23 mm0.23 mm
Czas reakcji (GtG)5 ms5 ms
Częstotliwość odświeżania60 Hz60 Hz
Kąt widzenia w pionie178 °178 °
Kąt widzenia w poziomie178 °178 °
Jasność300 cd/m²350 cd/m²
Kontrast statyczny1 000:11 000:1
Głębia koloru10 bit8 bit + FRC
Przestrzeń barw (sRGB)99 %99 %
Obsługa HDR++
Złącza
Transmisja wideo
DisplayPort v 1.4
HDMI 2 szt.
 
 
DisplayPort v 1.4
HDMI 2 szt.
v 2.0
USB type C (DisplayPort Alt Mode)
Power Delivery
Moc ładowania60 W
Złącza (opcjonalnie)
wyjście mini Jack (3.5 mm)
wyjście mini Jack (3.5 mm)
Funkcje i możliwości
Funkcje i możliwości
PBP (Picture by Picture)
Flicker-Free
 
Flicker-Free
Regulacja wysokości
Hub USB 3.x
 /2 szt./
Szybkie ładowanie
Funkcje gamingowe
podświetlenie ciemnych obszarów /Black Stabilizer/
Dynamic Action Sync
podświetlenie ciemnych obszarów /Black Stabilizer/
 
Dane ogólne
Cienka ramka
Uchwyt ściennyVESA100x100 mmVESA100x100 mm
Pobór mocy42 W60 W
Klasa energetyczna (new)F
Wymiary (SxWxG)817x485x223 mm
814x525x211 mm /z podstawą/
Waga6.9 kg
8 kg /z podstawą/
Kolor obudowy
Data dodania do E-Katalogstyczeń 2023lipiec 2020

Przekątna

Przekątna matrycy monitora w calach.

Parametr ten jest jednym z najważniejszych dla każdego ekranu - określa całkowity rozmiar jego obszaru roboczego. Ogólnie rzecz biorąc, większe monitory są uważane za wygodniejsze: duży ekran pozwala zobaczyć duży fragment tekstu, obrazów itp. bez konieczności przewijania obrazu. Z drugiej strony, przekątna wpływa bezpośrednio na wymiary, wagę i koszt monitora. Dodatkowo warto pamiętać, że ekrany o tej samej przekątnej mogą mieć różne proporcje i różne specjalizacje: np. modele wielkoformatowe są wygodne do gier i oglądania filmów, a do pracy z dokumentami preferowane są klasyczne rozwiązania 4:3 lub 5:4. Obecnie na rynku dostępne są monitory o różnych przekątnych, wśród nich najpopularniejsze to: 19-20", 22", 23 - 24", 25 - 26", 27 - 28", 29 - 30", 32", 34" i więcej.

Promień krzywizny

Promień krzywizny ekranu w zakrzywionym monitorze (patrz wyżej). Parametr ten jest wskazywany w milimetrach wzdłuż promienia okręgu, którego zgięcie odpowiada zgięciu monitora: na przykład oznaczenie 1800R wskazuje promień 1,8 m.

Im niższa liczba w tym oznaczeniu, tym bardziej zakrzywiony ekran (przy pozostałych warunkach równych). Jednocześnie niektórzy producenci twierdzą, że 1000R jest uważane za idealną wartość krzywizny: podobno przy takiej krzywiźnie ekranu obraz na nim jest jak najbliżej naturalnego pola widzenia osoby, a im bliżej krzywizna monitora do 1000R, tym lepsze wrażenia wizualne. W praktyce jednak wiele zależy od osobistych preferencji; a patrząc z dużej odległości (przekraczającej promień krzywizny o półtora raza lub więcej), tracą się wszystkie zalety zakrzywionego ekranu.

Jasność

Maksymalna jasność zapewniana przez ekran monitora.

Monitor o dużej jasności warto wybierać przede wszystkim wtedy, gdy urządzenie ma być używane w jasnym otoczeniu - na przykład gdy światło słoneczne wpada do miejsca pracy. Takie oświetlenie może „zagłuszyć” przyciemniony obraz, przez co praca jest niewygodna. W innych warunkach wysoka jasność ekranu bardzo męczy oczy.

Większość współczesnych monitorów jest w stanie zapewnić około 200 - 400 cd/m2 - to zwykle wystarcza nawet w słońcu. Jednak są też wyższe wartości: na przykład w panelach LCD (patrz „Rodzaj”) jasność może osiągać kilka tysięcy cd/m2. Jest to konieczne biorąc pod uwagę specyfikę takich urządzeń - obraz musi być wyraźnie rozpoznawalny z dużej odległości.

Głębia koloru

Głębia koloru obsługiwana przez monitor.

Parametr ten charakteryzuje liczbę odcieni, które może wyświetlić ekran. I tu warto przypomnieć, że obraz we współczesnych monitorach budowany jest w oparciu o 3 podstawowe kolory - czerwony, zielony, niebieski (schemat RGB). Liczba bitów jest wskazana nie dla całego ekranu, ale dla każdego koloru podstawowego. Na przykład 6 bitów (minimalna głębia kolorów dla współczesnych monitorów) oznacza, że ekran jest w stanie wyprodukować 2^6, czyli 64 odcienie czerwieni, zieleni i koloru niebieskiego; całkowita liczba odcieni wyniesie 64*64*64 = 262 144 (0,26 mln). 8-bitowa głębia kolorów (256 odcieni dla każdego koloru podstawowego) daje już łącznie 16,7 mln kolorów; a dzisiejsze najbardziej zaawansowane monitory obsługują 10-bitowe kolory, umożliwiając pracę z ponad miliardem odcieni.

Osobna wzmianka dotyczy ekranów z obsługą technologii FRC; obecnie można znaleźć modele oznaczone „6 bit + FRC” i „8 bit + FRC”. Technologia ta została opracowana w celu poprawy jakości obrazu w sytuacjach, gdy przychodzący sygnał wideo ma większą głębię kolorów niż ekran - na przykład gdy 10-bitowe wideo jest podawane na 8-bitową matrycę. Jeśli taki ekran obsługuje FRC, obraz na nim będzie zauważalnie lepszy niż na zwykłym 8-bitowym monitorze (choć nieco gorszy niż na pełnoprawnym 10-bitowym, ale ekrany „8...-bit + FRC” są dużo tańsze).

Wysoka głębia kolorów jest ważna przede wszystkim w przypadku profesjonalnej pracy z grafiką i innych zadań wymagających dużej dokładności odwzorowania barw. Z drugiej strony, takie cechy znacząco wpływają na koszt monitora. Ponadto warto pamiętać, że jakość odwzorowania barw zależy nie tylko od głębi kolorów, ale także od innych parametrów - w szczególności od przestrzeni barw (patrz poniżej).

Transmisja wideo

VGA. Złącze przeznaczone do przesyłania analogowych sygnałów wideo już w czasach monitorów CRT (specjalnie do nich). Dziś jest uważane za przestarzałe i stopniowo wycofuje się z użytkowania - w szczególności ze względu na małą przepustowość, która nie pozwala w pełni współpracować z treściami HD, a także podwójną konwersję sygnału przy zastosowaniu VGA w monitorach LCD (co może stać się potencjalnym źródłem zakłóceń).

DVI. Złącze do przesyłania sygnału wideo zaprojektowane specjalnie dla urządzeń LCD, w tym monitorów. Chociaż skrót DVI pierwotnie oznacza „cyfrowy interfejs wideo”, interfejs ten umożliwia również analogową transmisję danych. W rzeczywistości istnieją trzy główne typy DVI: analogowe, kombinowane i cyfrowe. Pierwsza odmiana w nowoczesnym sprzęcie komputerowym jest prawie nieużywana (funkcję tę pełni tak naprawdę złącze VGA), a złącze czysto cyfrowe - DVI-D - jest wskazane osobno w naszym katalogu (patrz poniżej). Dlatego jeśli specyfikacja monitora wskazuje „po prostu DVI” - najprawdopodobniej chodzi o kombinowane złącze DVI-I. Pod względem specyfikacji analogowego sygnału wideo jest ono zbliżone do opisanego powyżej VGA (a nawet kompatybilne z nim poprzez najprostszy adapter), pod względem możliwości cyfrowych - do DVI-D (jednokanałowego, a nie Dual Link). Jednak ze względu na rozprzestrzenianie się czysto cyfrowych standardów, DVI-I jest coraz rzadz...iej spotykane.

DVI-D. Odmiana interfejsu DVI opisanego powyżej, obsługująca wyłącznie cyfrowy format sygnału wideo. Standardowy (Single Link) interfejs DVI-D umożliwia transmisję wideo w rozdzielczościach do 1920x1080 przy częstotliwości odświeżania 75 Hz lub 1920x1200 przy częstotliwości odświeżania 60 Hz, co już wystarcza do pracy ze współczesnymi rozdzielczościami aż do Full HD. Dodatkowo istnieje dwukanałowa (Dual Link) wersja tego złącza, która ma zwiększoną przepustowość i pozwala na pracę z rozdzielczościami do 2560x1600 (przy 60 Hz; lub 2048x1536 przy 75 Hz). Odpowiednio konkretny rodzaj DVI-D zależy od rozdzielczości monitora. W takim przypadku jednokanałowy ekran można podłączyć do dwukanałowej karty graficznej, ale nie odwrotnie. Zauważamy również, że sytuacja jest podobna w przypadku złączy: porty Single Link i Dual Link różnią się nieco konstrukcją, a jednokanałowy kabel jest kompatybilny z dwukanałowym wejściem/wyjściem, ale znowu nie odwrotnie.

DisplayPort. Interfejs pierwotnie stworzony do transmisji wideo (jednak można go wykorzystać także do przesyłania sygnałów audio – w tym DisplayPort działa podobnie jak HDMI). Występuje w wielu modelach monitorów. Należy pamiętać, że monitory z wejściami DisplayPort są również kompatybilne z wyjściami Thunderbolt (za pośrednictwem adaptera).

Konkretne możliwości tego złącza zależą od jego wersji. We współczesnych monitorach spotyka się następujące wersje:
  • v.1.2. Najwcześniejsza z rozpowszechnionych w naszych czasach wersji, wydana w 2010 roku. To właśnie w niej po raz pierwszy wprowadzono takie funkcje, jak obsługa 3D i możliwość łączenia szeregowego wielu ekranów. Wersja 1.2 umożliwia przesyłanie wideo 5K z prędkością 30 klatek na sekundę, możliwa jest również praca z wyższymi rozdzielczościami (do 8K), ale z pewnymi ograniczeniami.
  • v.1.3. Wersja DisplayPort wydana w 2014 roku. Ma półtora razy większą przepustowość niż v.1.2 i pozwala na transmisję wideo 8K przy 30 kl./s, 5K - przy 60 kl./s i 4K - przy 120 kl./s. Dodatkowo ta wersja posiada funkcję Dual-mode, która umożliwia podłączenie do wyjść HDMI i DVI za pomocą najprostszych adapterów pasywnych.
  • v.1.4. W tej wersji maksymalna liczba klatek na sekundę przy pracy z jednym ekranem wzrosła do 120 kl/s dla standardu 8K i do 240 kl/s dla standardów 4K i 5K (dane mają być przesyłane z kompresją z wykorzystaniem technologii DSC – Display Stream Compression). Inne funkcje obejmują kompatybilność z HDR10 i możliwość jednoczesnego przesyłania do 32 kanałów audio.
  • v.2.1. Wersja 2022 roku wykorzystująca tę samą specyfikację warstwy fizycznej co USB4. Przepustowość interfejsu została podwojona w porównaniu z wersją 1.4 (do 80 Gbit/s, z czego 77,37 Gbit/s jest dostępne do przesyłania danych). Przy tym realizowano obsługę podłączenia wyświetlaczy o rozdzielczościach do 16K przy 60 kl./s, 8K przy 120 kl./s, 4K przy 240 Hz i 2K przy 480 Hz (bez dodatkowego wykorzystania technologii DSC – Display Stream Compression). Kable DP40 (40 Gb/s) mogą być dłuższe niż dwa metry, a kable DP80 (80 Gb/s) mogą mieć długość ponad jednego metra.


— Mini DisplayPort. Zmniejszona wersja złącza DisplayPort opisanego powyżej, używana głównie w laptopach; szczególnie popularna w laptopach Apple. Ostatnio pojawił się trend zastępowania Mini Display Port uniwersalnym interfejsem Thunderbolt; jednak ten interfejs działa przez to samo złącze i zapewnia te same możliwości. Innymi słowy, monitory można podłączyć do Thunderbolt (wersji 1 i 2) za pomocą standardowego kabla miniDisplayPort, bez użycia adapterów (w przypadku v3 adapter jest nadal potrzebny).

— HDMI. Interfejs HDMI został pierwotnie zaprojektowany do przesyłania wideo o wysokiej rozdzielczości i wielokanałowego dźwięku w postaci cyfrowej za pomocą jednego kabla. Jest to obecnie najpopularniejszy z interfejsów podobnego przeznaczenia; wyjścia HDMI są praktycznie obowiązkowe zarówno w komputerowych kartach graficznych, jak i w centrach multimedialnych, odtwarzaczach DVD/Blu-ray i innych podobnych urządzeniach.

Obecność w monitorze kilku wyjść danego typu pozwala na podłączenie go do kilku źródeł sygnału jednocześnie — na przykład do komputera i tunera telewizji satelitarnej. W ten sposób możesz przełączać się między źródłami za pomocą ustawień nie tracąc czasu na bawienie się z kablami, a także użyć funkcji PBP.

Przy tym sam port ma różne wersje, a najbardziej popularne obecnie wersję to:
  • — v.1.4. Najwcześniejsza z aktywnie używanych obecnie wersja; pojawiła się w 2009 roku. Obsługuje rozdzielczości do 4096x2160 przy 24 kl./s, a w standardzie Full HD (1920x1080) liczba klatek na sekundę może osiągać 120 kl./s; możliwa jest także transmisja wideo 3D.
  • v.2.0. Wersja wprowadzona w 2013 roku jako olbrzymia aktualizacja standardu HDMI. Obsługuje wideo 4K z szybkością do 60 kl./s (stąd nazwa HDMI UHD), a także do 32 kanałów audio i do 4 strumieni audio jednocześnie. Ta wersja obsługuje także ultrawide 21:9.
  • v.2.1. Dość znacząca aktualizacja w stosunku do wersji 2.0, wprowadzona pod koniec 2017 roku. Dalsze zwiększenie przepustowości umożliwiło obsługę rozdzielczości do 8K przy 120 kl./s włącznie. Wprowadzono także ulepszenia dotyczące pracy z HDR. Należy zaznaczyć, że do korzystania ze wszystkich funkcji HDMI v 2.1 potrzebne są kable HDMI Ultra High Speed, chociaż podstawowe funkcje są też dostępne w przypadku zwykłych kabli.


— Wsparcie dla Adaptive Sync. Obsługa przez ekran technologii VESA Adaptive-Sync.

Funkcja ta ma na celu synchronizację częstotliwości odświeżania wyświetlacza z szybkością klatek GPU w celu zmniejszenia opóźnień, zminimalizowania artefaktów i wyeliminowania efektu rozchodzenia się obrazu. Ekrany z certyfikatem Adaptive-Sync powinny domyślnie działać z częstotliwością odświeżania 120 Hz lub wyższą, a częstotliwość klatek powinna być w stanie spaść do 60 Hz. Rzeczywisty czas odpowiedzi takich wyświetlaczy powinien być krótszy niż 5 ms. Należy zauważyć, że VESA Adaptive-Sync jest dostępne tylko dla interfejsu DisplayPort w wersji 1.2a lub nowszej.

— USB B (dla sygnału wideo). Rodzaj interfejsu USB służącego do transmisji sygnału wideo. Aby uzyskać szczegółowe informacje na temat ogólnych cech takiego połączenia, zobacz „USB A” powyżej; USB B różni się od A jedynie konstrukcją złącza. Nie wchodząc w szczegóły techniczne, możemy powiedzieć, że pod tym terminem łączone są wszystkie rodzaje wejść USB, które nie należą do Type A lub Type C. Mogą to być na przykład gniazda kwadratowe, podobne do tych stosowanych w drukarkach, lub małe wąskie i długie złącza, tylko trochę większe niż microUSB. Właściwie kluczowymi zaletami USB B są różnorodność wariantów oraz dostępność w każdym przypadku złącza optymalnego dla danego modelu - np. wspomniane wąskie złącze dobrze pasuje do obudów przenośnych ekranów o niewielkiej grubości. Z drugiej strony, takie modele są mniej uniwersalne pod względem podłączenia: do podłączenia do komputera wymagany jest specjalny kabel-adapter. Ten kabel jest zwykle dołączony w zestawie, ale znalezienie zamiennika może być trudne, jeśli zostanie uszkodzony lub zgubiony.

USB C (DisplayPort AltMode). Inna odmiana interfejsu USB używanego do pracy z sygnałem wideo. Cechuje się małymi rozmiarami (niewiele większymi od microUSB) oraz posiada dwustronną konstrukcję, która pozwala na podłączenie wtyczki z dowolnej strony - to sprawia, że Type C jest wygodniejszy niż poprzednie standardy. Jednocześnie zauważamy, że taki monitor można początkowo zaprojektować do podłączenia do wyjścia USB C (przynajmniej taki kabel adaptera może być dostarczony w zestawie), ten punkt warto wyjaśnić osobno.

Interfejs Thunderbolt. Thunderbolt to protokół przesyłania danych (stosowany w urządzeniach Apple), którego przepustowość sięga 40 Gb/s. Sama wtyczka, podobnie jak prędkość, zależy od wersji: Thunderbolt v1 i v2 używają miniDisplayPort (patrz wyżej), monitory z wejściami Thunderbolt niekoniecznie są kompatybilne z oryginalnymi wyjściami miniDisplayPort - warto wyjaśnić tę kompatybilność osobno. Thunderbolt v3 jest oparty na złączu USB C (patrz wyżej).

Power Delivery

Fakt, że port USB C obsługuje Power Delivery oznacza, że takie złącze jest w stanie dostarczać/odbierać zwiększone zasilanie - do 100 watów. Ale czysto teoretycznie. Póki co w praktyce takie porty w monitorach nie mają tak dużych mocy, a jednoczesne przesyłanie obrazu i zasilania przez USB C w większości przypadków jest albo niemożliwe, albo ograniczone znacznie mniejszą mocą. Ale w każdym razie obecność Power Delivery pozwala ładować gadżety z monitora, a w niektórych przypadkach używać go jako źródła zasilania.

Moc ładowania

Moc, która może przejść przez złącze USB C z technologią szybkiego ładowania Power Delivery. W związku z tym od tej wartości zależy zdolność zasilania podłączonych urządzeń, w szczególności laptopów, które potrzebują co najmniej 60 W. Dlatego, aby używać USB C nie tylko do transmisji wideo, ale także do zasilania podłączonego gadżetu, upewnij się, że możesz dostarczyć niezbędne zasilanie. Ważną kwestią jest to, że nie wszystkie monitory mogą jednocześnie przesyłać obraz i zasilanie o maksymalnej mocy, dlatego ten punkt wskazuje maksymalną wartość mocy tylko w trybie zasilania.

Funkcje i możliwości

 

Regulacja wysokości

Możliwość przesuwania ekranu monitora w górę i w dół względem podstawy. Funkcja ta jest bardzo wygodna przy regulacji wysokości ekranu - o wiele łatwiej jest go przesuwać na uchwycie niż szukać podstawki czy korzystać z innych sztuczek.
Dynamika cen