Polska
Katalog   /   Komputery   /   Monitory

Porównanie Dell U3023E 30 " vs Dell UP3017 30 " czarny

Dodaj do porównania
Dell U3023E 30 "
Dell UP3017 30 "  czarny
Dell U3023E 30 "Dell UP3017 30 " czarny
Porównaj ceny 29
od 2 049 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajmonitormonitor
Przekątna30 "30 "
Wyświetlacz
Rodzaj matrycyIPSAH-IPS
Powłoka ekranubłyszcząca (antyrefleksyjna)matowa
Rozdzielczość2560x1600 (16:10)2560x1600 (16:10)
Rozmiar piksela0.25 mm0.25 mm
Czas reakcji (GtG)5 ms6 ms
Częstotliwość odświeżania60 Hz60 Hz
Częstotliwość odświeżania (pion.)50 – 86 Hz
Częstotliwość odświeżania (pozioma)30 – 113 kHz
Kąt widzenia w pionie178 °178 °
Kąt widzenia w poziomie178 °178 °
Jasność400 cd/m²350 cd/m²
Kontrast statyczny1 000:11 000:1
Głębia koloru8 bit + FRC
Przestrzeń barw (sRGB)100 %99 %
Przestrzeń barw (Adobe RGB)99 %
Przestrzeń barw (DCI P3)95 %99 %
Certyfikat TÜV Rheinland
Złącza
Transmisja wideo
DisplayPort v 1.4
 
HDMI 1 szt.
v 1.4
USB type C (DisplayPort Alt Mode)
DisplayPort
mini DisplayPort
HDMI 2 szt.
 
 
Power Delivery
Moc ładowania90 W
Podłączenie szeregowe DisplayPort
Złącza (opcjonalnie)
wyjście mini Jack (3.5 mm)
LAN
 
 
 
liniowe
Funkcje i możliwości
Funkcje i możliwości
PBP (Picture by Picture)
Flicker-Free
PBP (Picture by Picture)
Flicker-Free
Tryb portretowy
Obrót ekranu
Regulacja wysokości
Hub USB 3.x
 /4 szt./
 /4 rzeczy./
Szybkie ładowanie
Dane ogólne
Cienka ramka
Uchwyt ściennyVESA100x100 mmVESA100x100 mm
Pobór mocy27 W
108 W /0,3 W. w trybie czuwania/
Wymiary (SxWxG)
656x473x230 mm /z podstawą/
686.9x632.2x217 mm /z podstawą/
Waga
11.13 kg /z podstawą/
6.49 kg
Kolor obudowy
Data dodania do E-Katalogmaj 2022sierpień 2016

Rodzaj matrycy

Technologia, w której wykonana jest matryca monitora.

TN+film. Najstarsza i najbardziej rozpowszechniona technologia produkowania matryc. Oryginalne monitory TN (Twisted Nematic) mają szybki czas reakcji i niski koszt, ale jakość obrazu jest przeciętna. Na przykład jakość odwzorowania barw jest niska, a idealna czerń jest generalnie niemożliwa do odtworzenia. Ponadto oryginalna technologia TN zapewnia stosunkowo małe kąty widzenia. Aby poprawić tę sytuację, na powierzchnię matrycy nakłada się specjalną folię. Te matryce nazwano „TN+film”. Monitory z taką matrycą są rozpowszechnione i niedrogie. Idealnie nadają się do wykorzystania przez niewymagających użytkowników zarówno w domu, jak i w biurze, a gracze docenią szybki czas reakcji.

*VA (Vertical Aligment, opcje: MVA, PVA, Super MVA, Super PVA). Swego rodzaju przejściowa opcja między drogą i wysokiej jakości IPS a budżetową TN. Zapewniają dość wysokiej jakości odwzorowanie barw, w tym czerni, kąty widzenia sięgają 178°. Główną wadą matryc VA jest znaczny czas reakcji (szczególnie w przypadku monitorów MVA), przez co takie monitory stosunkowo słabo nadają się do oglądania filmów i szybkich gier. Ta wada jest stopniowo eliminowana, a najnowsze monitory VA zbliżają się do TN+film pod względem czasu reakcji.

— IPS. Początkowo techn...ologia IPS została stworzona z myślą o monitorach wysokiej klasy (w szczególności „designerskich”), dla których kluczowymi parametrami była jakość odwzorowania barw oraz szeroka przestrzeń barw. Przy tych wszystkich zaletach oryginalne matryce IPS miały szereg poważnych wad - przede wszystkim niską szybkość reakcji i imponujący koszt. W związku z tym opracowano wiele modyfikacji technologii IPS, mających w pewnym stopniu skompensować te wady.

OLED. Monitory z ekranami wykorzystującymi organiczne diody elektroluminescencyjne - OLED. Takie diody LED można wykorzystywać zarówno do podświetlenia tradycyjnej matrycy, jak i jako elementy, z których zbudowany jest ekran. W pierwszym przypadku przewagami OLED nad tradycyjnym podświetleniem LED są kompaktowość, wyjątkowo niski pobór mocy, równomierność podświetlenia, a także doskonała jasność i kontrast. A w matrycach w całości składających się z OLED te zalety są jeszcze wyraźniejsze. Głównymi wadami monitorów OLED są: wysoka cena (która jednak stale spada wraz z rozwojem i udoskonalaniem technologii), a także podatność pikseli organicznych na wypalanie się przy transmisji statycznych obrazów przez długi czas lub obrazów ze statycznymi elementami (pasek powiadomień, zegar itp.).

QLED. Monitory zbudowane w technologii kropek kwantowych (QLED). Ta technologia może być stosowana w różnych rodzajach matryc. Polega ona na zastąpieniu zestawu kilku filtrów barwnych stosowanych w klasycznych matrycach specjalną cienkowarstwową powłoką opartą na nanocząsteczkach, a tradycyjnych białych diod LED na niebieskie. Pozwala to na uzyskanie wyższej jasności, nasycenia kolorów i jakości odwzorowania barw przy jednoczesnym zmniejszeniu grubości i zużycia energii. Ponadto QLED dobrze nadaje się do zakrzywionych ekranów. Minusem tych zalet jest wysoki koszt.

QD-OLED. Rodzaj hybrydowych matryc, łączących w sobie „kropki kwantowe” (Quantum Dot) i organiczne diody elektroluminescencyjne (OLED). Technologia czerpie najlepsze rozwiązania z QLED i OLED: opiera się na niebieskich diodach LED, samoświecących pikselach (zamiast zewnętrznego podświetlenia) i „kropkach kwantowych”, które pełnią rolę filtrów barwnych, ale jednocześnie prawie nie osłabiają światło (w odróżnieniu od tradycyjnych filtrów). Dzięki zastosowaniu szeregu zaawansowanych rozwiązań twórcom udało się uzyskać bardzo imponujące parametry, znacząco przewyższające wiele innych matryc OLED. Należą do nich wysoka jasność szczytowa od 1000 nitów (cd/m²), doskonały kontrast i głębia czerni, a także rozszerzona przestrzeń barw (ponad 120% gamy DCI P3). Takie matryce spotyka się głównie w drogich, zaawansowanych monitorach o dużej przekątnej ekranu.

— AHVA. Rodzaj matrycy stworzony przez AU Optronics (joint venture pomiędzy Acer i BenQ) jako rozwiązanie podobne do współczesnego IPS. Wśród kluczowych zalet tej opcji w porównaniu z analogami jest prawie całkowity brak zniekształceń kolorów pod każdym kątem widzenia.

— PLS (Plane to Line Switching). Ten rodzaj matrycy został opracowany przez inżynierów Samsunga. Opiera się na znanej technologii IPS. Pod pewnymi względami, a mianowicie: jasność i kontrast PLS przekracza IPS o 10%. Głównym celem stworzenia nowego typu ekranów było obniżenie kosztu matrycy, zdaniem dewelopera koszt produkcji został obniżony o 15%, co wpłynie pozytywnie na ostateczną cenę monitorów w porównaniu z odpowiednikami IPS.

— IGZO. Technologia wprowadzona przez firmę Sharp w 2012 roku. Kluczową różnicą pomiędzy matrycami IGZO a klasycznymi matrycami LCD jest to, że w warstwie aktywnej (odpowiedzialnej za tworzenie obrazu) zastosowano nie krzem amorficzny, a materiał półprzewodnikowy na bazie tlenku indu, galu i cynku. Umożliwia to tworzenie ekranów o niezwykle krótkim czasie reakcji i dużej gęstości pikseli, a ta technologia jest uważana za dobrze dopasowaną do ekranów o ultrawysokiej rozdzielczości. Przy tym wszystkim cechy odwzorowania barw pozwalają na stosowanie monitorów IGZO nawet w profesjonalnym polu, a pobór mocy jest bardzo niski. Główną wadą tej odmiany jest jej wysoki koszt.

- UV2A. Technologia LCD opracowana przez firmę Sharp i wprowadzona w 2009 roku. Jedną z kluczowych cech matryc UV2A jest to, że są zbudowane na ciekłych kryształach wrażliwych na światło ultrafioletowe. I to właśnie promieniowanie UV jest wykorzystywane jako sygnał sterujący – zapewnia to, że kryształy obracają się we właściwym kierunku, tworząc obraz. Techniczne cechy takich układów są takie, że położenie poszczególnych kryształów można regulować z niezwykle dużą dokładnością – nawet do kilku pikometrów (przy wielkości samych kryształów około 2 nm). Według producenta zapewnia to dwie kluczowe korzyści: brak „wycieku” podświetlenia oraz lepszą transmisję światła przy „otwartych” kryształach. Pierwsza pozwala osiągnąć bardzo głęboką i bogatą czerń, druga zapewnia doskonałą jasność przy niskim zużyciu energii, a w połączeniu te dwie cechy umożliwiają tworzenie ekranów o bardzo wysokim współczynniku kontrastu statycznego - aż 5000:1. Jednocześnie zwracamy uwagę, że rzeczywiste cechy kontrastu w monitorach UV2A mogą być zauważalnie skromniejsze – wszystko zależy od specyfikacji konkretnej matrycy oraz cech, które producent był w stanie lub uznał za konieczne zapewnić.

- Mini LED IPS. Odmiana znanej matrycy IPS, która jest oświetlona szeregiem diod LED o zmniejszonych rozmiarach. Mały kaliber poszczególnych źródeł światła (około 100-200 mikronów) pozwala na formowanie znacznie większej liczby stref kontrolowanego lokalnego ściemniania ekranu. Razem zapewnia to lepszą jasność, kontrast, nasycenie kolorów i głębię czerni oraz podnosi poprzeczkę dla technologii HDR.

- Mini LED VA. Odmiana matryc VA z systemem podświetlenia Mini LED. Składa się z mnóstwa maleńkich diod LED, które ze względu na swoją liczbę tworzą wielokrotnie więcej lokalnych stref przyciemniania ekranu niż standardowe płótna. W rezultacie panele VA z podświetleniem Mini LED mogą pochwalić się lepszym odwzorowaniem kolorów, imponującą głębią czerni i znacznie poprawioną wydajnością treści HDR.

- Mini LED QLED. Za płaszczyzną paneli QLED w monitorach z systemem podświetlenia Mini LED kryją się tysiące miniaturowych diod LED nie większych niż 200 mikronów, które dzielą ekran na bardzo wiele stref z kontrolowanym, lokalnym ściemnianiem. Można je indywidualnie przyciemniać w celu pełnego wyświetlania treści HDR z jasnym światłem i głęboką czernią.

Powłoka ekranu

We współczesnych monitorach mogą być stosowane wyświetlacze z błyszczącą i matową powierzchnią ekranu. W niektórych przypadkach preferowana jest matowa powierzchnia ze względu na fakt, że na błyszczącym ekranie po wystawieniu na działanie jasnego światła pojawia się zauważalny odblask, czasami zakłócający oglądanie. Z drugiej strony, błyszczące ekrany oferują lepszą jakość obrazu, wyższą jasność i bardziej nasycone kolory.
Na skutek rozwoju technologii na rynku pojawiły się monitory ze specjalną powłoką antyrefleksyjną, która, zachowując wszystkie zalety błyszczącego ekranu, wytwarza znacznie mniej widoczne odblaski w jasnym świetle otoczenia.

Czas reakcji (GtG)

Czas, jaki potrzebuje każdy pojedynczy punkt na monitorze, aby przełączyć się z jednego stanu do drugiego. Im krótszy czas reakcji, tym szybciej matryca reaguje na sygnał sterujący, tym mniejsze opóźnienie i lepsza jakość obrazu w scenach dynamicznych.

Zwróć uwagę, że w danym przypadku stosowana jest metoda gray-to-gray (czas uruchomienia od 10% szarego do 90%). Warto zwrócić uwagę na parametr ten, jeśli monitor kupuje się do dynamicznych gier, oglądania filmów i innych zastosowań związanych z szybkim ruchem na ekranie. I nawet w takich przypadkach wystarczy szybkość reakcji 8 ms; dalsze skrócenie czasu odpowiedzi nie wpływa na jakość postrzeganego obrazu.

Częstotliwość odświeżania (pion.)

Częstotliwość skanowania pionowego - lub też częstotliwość odświeżania - obsługiwana przez monitor.

Termin „częstotliwość odświeżania” był pierwotnie używany w specyfikacjach monitorów CRT pracujących z sygnałem analogowym. Tradycyjnie nadal jest używany w stosunku do matryc LCD, ale w przypadku takich ekranów częstotliwość odświeżania jest w rzeczywistości liczbą klatek na sekundę. Szczegóły dotyczące liczby klatek na sekundę podano powyżej; tutaj zauważamy, że w tym przypadku wskazywana jest nie maksymalna częstotliwość, ale zakres częstotliwości obsługiwanych przez monitor - od minimum do maksimum. Pozwala to ocenić zgodność z niektórymi kartami graficznymi i trybami pracy: liczba klatek na sekundę sygnału wideo musi odpowiadać prędkości klatek monitora (lub przynajmniej być jej wielokrotnością), w przeciwnym razie możliwe są drgania i inne nieprzyjemne zjawiska.

Warto zauważyć, że monitor zwykle obsługuje nie wszystkie częstotliwości z podanego w specyfikacji zakresu, a tylko niektóre standardowe wartości - na przykład 50 Hz, 60 Hz i 75 Hz dla modelu 50 - 75 Hz.

Częstotliwość odświeżania (pozioma)

Częstotliwość odświeżania poziomego obrazu na ekranie monitora.

Parametr ten był istotny dla monitorów CRT, w których obraz był tworzony przez wiązkę elektronów, która „biegła” każdą oddzielną linią na ekranie i podświetlała piksele. Częstotliwość odświeżania poziomego określa liczbę linii rysowanych na sekundę. Jednak współczesne matryce LCD nie wykorzystują skanu, a pełnoklatkowy obraz. Dlatego dzisiaj parametr ten jest rzadko podawany w monitorach i opisuje maksymalną częstotliwość odświeżania poziomego w analogowym sygnale wideo (na przykład przez interfejs VGA), z którą ekran może normalnie pracować.

Jasność

Maksymalna jasność zapewniana przez ekran monitora.

Monitor o dużej jasności warto wybierać przede wszystkim wtedy, gdy urządzenie ma być używane w jasnym otoczeniu - na przykład gdy światło słoneczne wpada do miejsca pracy. Takie oświetlenie może „zagłuszyć” przyciemniony obraz, przez co praca jest niewygodna. W innych warunkach wysoka jasność ekranu bardzo męczy oczy.

Większość współczesnych monitorów jest w stanie zapewnić około 200 - 400 cd/m2 - to zwykle wystarcza nawet w słońcu. Jednak są też wyższe wartości: na przykład w panelach LCD (patrz „Rodzaj”) jasność może osiągać kilka tysięcy cd/m2. Jest to konieczne biorąc pod uwagę specyfikę takich urządzeń - obraz musi być wyraźnie rozpoznawalny z dużej odległości.

Głębia koloru

Głębia koloru obsługiwana przez monitor.

Parametr ten charakteryzuje liczbę odcieni, które może wyświetlić ekran. I tu warto przypomnieć, że obraz we współczesnych monitorach budowany jest w oparciu o 3 podstawowe kolory - czerwony, zielony, niebieski (schemat RGB). Liczba bitów jest wskazana nie dla całego ekranu, ale dla każdego koloru podstawowego. Na przykład 6 bitów (minimalna głębia kolorów dla współczesnych monitorów) oznacza, że ekran jest w stanie wyprodukować 2^6, czyli 64 odcienie czerwieni, zieleni i koloru niebieskiego; całkowita liczba odcieni wyniesie 64*64*64 = 262 144 (0,26 mln). 8-bitowa głębia kolorów (256 odcieni dla każdego koloru podstawowego) daje już łącznie 16,7 mln kolorów; a dzisiejsze najbardziej zaawansowane monitory obsługują 10-bitowe kolory, umożliwiając pracę z ponad miliardem odcieni.

Osobna wzmianka dotyczy ekranów z obsługą technologii FRC; obecnie można znaleźć modele oznaczone „6 bit + FRC” i „8 bit + FRC”. Technologia ta została opracowana w celu poprawy jakości obrazu w sytuacjach, gdy przychodzący sygnał wideo ma większą głębię kolorów niż ekran - na przykład gdy 10-bitowe wideo jest podawane na 8-bitową matrycę. Jeśli taki ekran obsługuje FRC, obraz na nim będzie zauważalnie lepszy niż na zwykłym 8-bitowym monitorze (choć nieco gorszy niż na pełnoprawnym 10-bitowym, ale ekrany „8...-bit + FRC” są dużo tańsze).

Wysoka głębia kolorów jest ważna przede wszystkim w przypadku profesjonalnej pracy z grafiką i innych zadań wymagających dużej dokładności odwzorowania barw. Z drugiej strony, takie cechy znacząco wpływają na koszt monitora. Ponadto warto pamiętać, że jakość odwzorowania barw zależy nie tylko od głębi kolorów, ale także od innych parametrów - w szczególności od przestrzeni barw (patrz poniżej).

Przestrzeń barw (sRGB)

Przestrzeń barw monitora według modelu kolorów Rec. 709 lub sRGB.

Dowolna przestrzeń barw jest wskazywana w procentach, ale nie w odniesieniu do całej gamy widocznych kolorów, ale w odniesieniu do warunkowej przestrzeni barw (modelu kolorów). Wynika to z faktu, że żaden współczesny ekran nie jest w stanie wyświetlić wszystkich kolorów widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości monitora, tym lepsze odwzorowanie barw.

Obecnie sRGB jest de facto standardowym modelem kolorów dla sprzętu komputerowego; jest używany przy projektowaniu i produkcji większości kart graficznych. Rec. 709 odgrywa podobną rolę w telewizji wysokiej rozdzielczości. Jednocześnie modele te są identyczne w gamie kolorystycznej, a procent pokrycia według nich okazuje się taki sam. W najbardziej zaawansowanych monitorach może osiągnąć, a nawet przekroczyć 100%; to właśnie te wartości są uważane za niezbędne w przypadku ekranów z najwyższej półki, m.in. profesjonalnych.

Przestrzeń barw (Adobe RGB)

Przestrzeń barw monitora według modelu kolorów Adobe RGB.

Dowolna przestrzeń barw jest wskazywana w procentach, ale nie w odniesieniu do całej gamy widocznych kolorów, ale w odniesieniu do warunkowej przestrzeni barw (modelu kolorów). Wynika to z faktu, że żaden współczesny ekran nie jest w stanie wyświetlić wszystkich kolorów widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości monitora, tym lepsze odwzorowanie barw.

W szczególności model kolorów Adobe RGB został pierwotnie opracowany do użytku w druku; zakres kolorów, które obejmuje, odpowiada możliwościom profesjonalnego sprzętu poligraficznego. W związku z tym wsparcie dla tego modelu i szeroka przestrzeń barw zgodnie z nim są ważne przede wszystkim, jeśli monitor jest używany do projektowania i układu wysokiej jakości produktów drukowanych. W najbardziej zaawansowanych ekranach wskaźnik ten może wynosić 99% lub więcej. Jednocześnie zauważamy, że Adobe RGB jest szerszy niż popularny sRGB, a wartości procentowe dla tego modelu są mniejsze: na przykład 99% dla RGB często daje tylko około 87% dla Adobe RGB.
Dynamika cen