Tryb nocny
Polska
Katalog   /   Telefony i komunikacja   /   Telefony i akcesoria   /   Telefony komórkowe

Porównanie Xiaomi Redmi Note 12 Pro 4G 256 GB / 8 GB vs Xiaomi Redmi Note 10 Pro 256 GB / 8 GB

Dodaj do porównania
Xiaomi Redmi Note 12 Pro 4G 256 GB / 8 GB
Xiaomi Redmi Note 10 Pro 256 GB / 8 GB
Xiaomi Redmi Note 12 Pro 4G 256 GB / 8 GBXiaomi Redmi Note 10 Pro 256 GB / 8 GB
Porównaj ceny 10
od 1 393 zł
Produkt jest niedostępny
Opinie
0
0
0
1
TOP sprzedawcy
Główne
Nie mylić z wersją 5G (procesor Dimensity 1080).
Duży ekran AMOLED z częstotliwością odświeżania 120 Hz. Poczwórny aparat główny. Boczny skaner linii papilarnych. Gniazdo podczerwieni. Dedykowane gniazdo kart pamięci. Wodoodporność IP53. Bateria o dużej pojemności z szybkim ładowaniem.
Wyświetlacz
Charakterystyka wyświetlacza
6.67 "
2400x1080 (20:9)
395 ppi
AMOLED
120 Hz
Dolby Vision
 
6.67 "
2400x1080 (20:9)
395 ppi
AMOLED
120 Hz
 
Gorilla Glass v5
Jasność700 nit700 nit
Stosunek wyświetlacza do obudowy86 %86 %
DCI-P3
Część sprzętowa
System operacyjnyAndroid 11.0Android 11.0
Model procesoraSnapdragon 732GSnapdragon 732G
Częstotliwość procesora2.2 GHz2.3 GHz
Liczba rdzeni procesora88
Ocena procesora AnTuTu1919
GPUAdreno 618Adreno 618
Pamięć RAM8 GB8 GB
Typ RAMLPDDR4XLPDDR4X
Pamięć wbudowana256 GB256 GB
Specyfikacja pamięciUFS 2.2UFS 2.2
Slot na karty pamięcimicroSDmicroSD
Maks. pojemność karty1024 GB
Chłodzenie cieczą
Wyniki testów
AnTuTu Benchmark336 000 punktów338 000 punktów
Geekbench1780 punktów
Wild Life (Extreme)336 punktów336 punktów
Aparat tylny
Liczba obiektywów4 moduły4 moduły
Obiektyw główny
108 MP
f/1.9
 
1/1.52"
108 MP
f/1.9
26 mm
 
Obiektyw ultraszerokokątny
8 MP
 
 
120 °
 
8 MP
f/2.2
13 mm
119 °
Sony IMX355, 1/4"
Obiektyw pomocniczy
Obiektyw makro
Nagrywanie Full HD (1080p)60 kl./s60 kl./s
Nagrywanie w jakości Ultra HD (4K)30 kl./s30 kl./s
Zwolnione tempo (slow-mo)960 kl./s
Powiększenie aparatami2 x
Zadeklarowane powiększenie2 x
Lampa błyskowa
Wynik testu DxOMark (aparat)106 punktów
Aparat przedni
Konstrukcjaokrągłe wycięcie w ekranieokrągłe wycięcie w ekranie
Obiektyw główny16 MP16 MP
Wartość przysłonyf/2.4f/2.5
Nagrywanie w jakości Full HD (1080p)30 kl./s30 kl./s
Komunikacja i złącza
Łączność
4G (LTE)
4G (LTE)
Rodzaj karty SIMnano-SIMnano-SIM
Liczba SIMSIM + SIM/microSD2 SIM
Komunikacja
Wi-Fi 5 (802.11ac)
Bluetooth v 5.0
 
Chip NFC
Port podczerwieni
Wi-Fi 5 (802.11ac)
Bluetooth v 5.1
aptX HD
Chip NFC
Port podczerwieni
Złącza
USB C 2.0
mini Jack (3.5 mm) u góry
USB C
mini Jack (3.5 mm) u góry
Funkcje i nawigacja
Funkcje i możliwości
czytnik linii papilarnych z boku
dźwięk stereo
Dolby Atmos
 
redukcja szumów
żyroskop
czujnik światła
czytnik linii papilarnych z boku
dźwięk stereo
 
Radio FM
redukcja szumów
żyroskop
czujnik światła
Nawigacja
 
Moduł GPS
GLONASS
Galileo
kompas cyfrowy
aGPS
Moduł GPS
GLONASS
 
kompas cyfrowy
Zasilanie
Pojemność baterii5000 mAh5020 mAh
Czas pracy (PCMark)11.18 h12.47 h
Test DxOMark (bateria)84
Szybkie ładowaniePower DeliveryQuick Charge 4.0
Moc ładowania67 W33 W
Czas szybkiego ładowania59% w 30 minut
Dane ogólne
Stopień ochrony IPIP53
Materiał ramki / pokrywytworzywo sztucznetworzywo sztuczne/Gorilla Glass
Wyposażenie
etui
ładowarka
etui
ładowarka
Wymiary (SxDxW)164.2x76.1x8.12 mm164x76.5x8.1 mm
Waga202 g193 g
Kolor obudowy
Data dodania do E-Katalogkwiecień 2023sierpień 2021

Charakterystyka wyświetlacza

Specyfikacja głównego (i najczęściej jedynego) wyświetlacza w urządzeniu.

Oprócz podstawowych parametrów - takich jak przekątna, rozdzielczość (ze względu na nią ekrany są umownie podzielone na HD, Full HD, href="/list/122/pr-49321/">2K i więcej), typ matrycy (najczęściej IPS, OLED, AMOLED, Super AMOLED, Dynamic AMOLED,), na tej liście mogą być podawane bardziej konkretne cechy. Wśród nich - kształt powierzchni (płaska lub zakrzywiona), obecność i wersja Gorilla Glass (w tym najpopularniejsza v6 i Victus), obsługa HDR i częstotliwość odświeżania (częstotliwość wyższa niż 60 Hz jest uważana za wysoką, mianowicie 90 Hz, 120 Hz i 144 Hz). Oto bardziej szczegółowy opis specyfikacji, które są istotne dla współczesnych wyświetlaczy: — Przekątna. Tradycyjnie przekątna ekranu jest podawana w calach. Większy wyświetlacz jest wygodniejszy w obsłudze: pomieszczą więcej in...formacji, a sam obraz jest lepiej czytelny. Minusem dużej przekątnej jest zwiększenie wymiarów urządzenia. Obecnie smartfony z ekranami 5" i mniejszymi są uważane za małe>. 5.6 – 6" i do 6.5" - to już jest średni format. Poza tym sporo modeli ma rozmiar 6.5". Klasyczne telefony bez ekranów dotykowych nie potrzebują dużej przekątnej - zwykle nie przekracza ona 3".

— Rozdzielczość. Rozdzielczość ekranu określają jego wymiary (w pionie i poziomie) w pikselach. Im większe są te wymiary (przy tej samej przekątnej), tym bardziej szczegółowy i wygładzony jest obraz, tym mniej widoczne są poszczególne piksele. Z drugiej strony zwiększenie rozdzielczości wpływa zarówno na koszt samego wyświetlacza, jak i wymagania sprzętowe telefonu. Warto też zauważyć, że ta sama rozdzielczość wygląda inaczej na ekranach o różnych rozmiarach; dlatego przy ocenie szczegółowości warto wziąć pod uwagę nie tylko parametr ten, lecz także ilość PPI (patrz poniżej).

— PPI. Zagęszczenie pikseli na ekranie urządzenia. Określa się na podstawie liczby punktów na cal (points per inch) - liczby pikseli na każdy poziomy lub pionowy odcinek o rozmiarze 1". Wskaźnik ten zależy jednocześnie od przekątnej i rozdzielczości, lecz ostatecznie jest to liczba PPI, która określa, jak wygładzony i szczegółowy jest obraz na wyświetlaczu. Dla porównania należy zaznaczyć, że w odległości około 25-30 cm od oczu zagęszczenie 300 PPI lub większe sprawia, że ​​poszczególne piksele są prawie niewidoczne dla osoby z normalnym wzrokiem, obraz jest postrzegany jako całościowy, przy większych odległościach podobny efekt jest zauważalny nawet przy mniejszym zagęszczeniu pikseli.

— Typ matrycy. Technologia, według której wykonana jest matryca ekranu. Parametr ten jest określa się tylko dla stosunkowo zaawansowanych wyświetlaczy, które przewyższają najprostsze ekrany LCD telefonów przyciskowych. Najbardziej rozpowszechnione w naszych czasach są następujące typy matryc:
  • IPS. Najbardziej popularna technologia, stosowana w ekranach współczesnych smartfonów. Zapewnia bardzo przyzwoitą jakość obrazu, kąty widzenia oraz czas reakcji, choć pod względem tych parametrów nieco ustępuje bardziej zaawansowanym wariantom (patrz poniżej). Z drugiej strony IPS ma również swoje zalety: trwałość, równomierne zużycie, a także dość niski koszt. Dzięki temu takie ekrany można spotkać we wszystkich kategoriach smartfonów - od niedrogich po topowe.
  • AMOLED. Technologia oparta na organicznych diodach elektroluminescencyjnych (OLED) opracowana przez firmę Samsung. Jedną z kluczowych różnic między takimi matrycami a bardziej tradycyjnymi wyświetlaczami jest to, że nie wymagają one zewnętrznego podświetlenia: każdy piksel sam jest źródłem światła. Z tego powodu zużycie energii takiego ekranu zależy od cech wyświetlanego obrazu, lecz generalnie okazuje się dość niskie. Ponadto matryce AMOLED wyróżniają się szerokimi kątami widzenia, doskonałymi wskaźnikami jasności i kontrastu, wysoką jakością kolorów oraz krótkim czasem reakcji. Dzięki temu takie ekrany nadal są wykorzystywane we współczesnych smartfonach, pomimo pojawienia się bardziej zaawansowanych technologii; można je spotkać nawet w topowych modelach. Główną wadą tej technologii jest stosunkowo wysoki koszt i nierównomierne zużycie pikseli: piksele, które pracują dłużej i częściej przy dużej jasności - wypalają się szybciej. Zwykle jednak efekt ten staje się zauważalny dopiero po kilku latach intensywnego użytkowania - okresie porównywalnym z żywotnością samego smartfona.
  • AMOLED (LTPO). Zaawansowana wersja paneli AMOLED z możliwością dynamicznego dostosowywania częstotliwości odświeżania w zależności od wykonywanych zadań. Skrót LTPO (Low Temperature Polycrystalline Oxid) oznacza „niskotemperaturowy tlenek polikrystaliczny”. Za tym terminem kryje się połączenie tradycyjnej technologii LTPS i cienkiej warstwy tlenku TFT z dodatkiem hybrydowo-tlenkowego krzemu polikrystalicznego do sterowania obwodami przełączającymi. Panele AMOLED (LTPO) zmniejszają zużycie energii przez gadżet o rząd wielkości. Tak więc przy wykonywaniu aktywnych czynności ekran urządzenia stosuje maksymalną lub wysoką częstotliwość odświeżania, a przy przeglądaniu zdjęć lub czytaniu tekstu wyświetlacz zmniejsza częstotliwość odświeżania do minimum.
  • Super AMOLED. Ulepszona wersja opisanej powyżej technologii AMOLED. Jednym z kluczowych ulepszeń jest to, że ekrany Super AMOLED nie mają szczeliny powietrznej między warstwą czujnika a znajdującym się poniżej wyświetlaczem. Umożliwiło to dalsze zwiększenie jasności i jakości obrazu, zwiększenie szybkości i niezawodności czujnika, a jednocześnie zmniejszenie zużycia energii. Wady takich matryc są takie same jak w przypadku oryginalnych AMOLED-ów. Ogólnie są one dość rozpowszechnione; większość smartfonów z podobnymi ekranami należy do średniej i najwyższej półki, lecz są też spotykane niedrogie modele.
  • OLED. Różnorodne typy matryc, oparte na wykorzystaniu organicznych diod LED; w rzeczywistości - są to analogi AMOLED i Super AMOLED, produkowane nie przez Samsunga, lecz przez inne firmy. Konkretne cechy takich ekranów może się różnić, natomiast większość z nich z jednej strony jest droższa od popularnych IPS, z drugiej zapewnia wyższą jakość obrazu (m.in. jasność, kontrast, kąty widzenia i odwzorowanie kolorów), gdyż również zużywają mniej energii i mają małą grubość. Głównymi wadami ekranów OLED są wysoka cena (która jednak stale spada wraz z rozwojem i udoskonalaniem technologii), a także podatność pikseli organicznych na wypalanie się przy wyświetlaniu statycznych obrazów przez długi czas lub obrazów ze statycznymi elementami (panel powiadomień, przyciski ekranowe itp.).
  • OLED (polimerowy). Ekrany oparte na organicznych diodach elektroluminescencyjnych (OLED), w których dla podstawy nie używa się szkła, tylko przezroczysty materiał polimerowy. Podkreślmy, że chodzi o podstawę matrycy; od góry pokryta jest ona tym samym szkłem, co w innych typach wyświetlaczy. Tak czy inaczej, taka konstrukcja oferuje kilka zalet w porównaniu z tradycyjnymi matrycami „szklanymi”: zapewnia dodatkową odporność na uderzenia i doskonale nadaje się do tworzenia zakrzywionych wyświetlaczy. Z drugiej strony, pod względem właściwości optycznych, tworzywo sztuczne jest gorsze od szkła; zatem ekrany tego typu często ustępują jakością obrazu swoim „rówieśnikom”, wykonanym w tradycyjnej technologii OLED, a przy podobnej jakości obrazu są znacznie droższe.
  • OLED (LTPO). Matryce OLED z adaptacyjną częstotliwością odświeżania, która zmienia się w szerokim zakresie w zależności od wykonywanych zadań. W grach ekrany z technologią LTPO automatycznie podnoszą częstotliwość odświeżania do wartości maksymalnych, zaś przy oglądaniu statycznych obrazów obniżają ją do minimum (od 1 Hz). Sercem tej technologii jest tradycyjne podłoże LTPS z cienką warstwą TFT nad podstawą tranzystorów cienkowarstwowych. Możliwość kontrolowania przepływu elektronów zapewnia dynamiczną kontrolę nad częstotliwością odświeżania. Przewagą konkurencyjną OLED (LTPO) jest zmniejszone zużycie energii.
Ponadto ekrany we współczesnych smartfonach mogą być wykonywane przy użyciu następujących technologii:
  • PLS. Odmiana technologii IPS stworzona przez firmę Samsung. Pod pewnymi względami - w szczególności pod względem jasności, kontrastu i kątów widzenia - przewyższa oryginał, a jednocześnie jest tańsza w produkcji i pozwala tworzyć elastyczne wyświetlacze. Jednak z wielu powodów ta technologia nie zyskała zbyt dużej popularności.
  • Super AMOLED Plus. Dalszy rozwój opisanej powyżej technologii Super AMOLED. Pozwala tworzyć jeszcze jaśniejsze, bardziej kontrastowe, a jednocześnie cieńsze i energooszczędne ekrany. Jednak najczęściej te ekrany są obecnie nazywane po prostu „Super AMOLED”, bez przedrostka „Plus”.
  • Dynamiczny AMOLED. Kolejne ulepszenie AMOLED wprowadzone w 2019 roku. Głównymi cechami takich matryc jest zwiększona jasność bez znaczącego wzrostu zużycia energii, a także 100% pokrycie przestrzeni barwnej DCI-P3 oraz kompatybilność z HDR10+; szczególnie dwa ostatnie szczegóły pozwalają na najwyższą jakość odtwarzania współczesnych filmów wysokobudżetowych na takich ekranach. Główną wadą Dynamic AMOLED jest wysoka cena; więc takie matryce spotyka się głównie w topowych modelach.
  • Super Clear TFT. Wspólne opracowanie Samsunga i Sony, które pojawiło się jako wymuszona alternatywa dla matryc Super AMOLED (zapotrzebowanie na nie kiedyś znacznie przekraczało możliwości produkcyjne). Co prawda jakość obrazu Super Clear TFT jest nieco niższa - lecz w produkcji takie matryce są znacznie prostsze i tańsze, a pod względem właściwości wciąż przewyższają większość ekranów IPS. Jednak w naszych czasach technologia ta jest rzadko używana, ustępując AMOLED-owi w różnych wersjach.
  • Super LCD. Kolejna alternatywa dla różnych typów technologii AMOLED; stosowana głównie w smartfonach HTC. Podobnie jak Super AMOLED, takie ekrany nie mają dodatkowej szczeliny powietrznej, co wpływa pozytywnie zarówno na jakość obrazu, jak i na dokładność sensora. Istotną zaletą Super LCD jest jego dobra energooszczędność, zwłaszcza przy wyświetlaniu jasnej bieli; lecz pod względem ogólnego nasycenia kolorów (w tym czerni) ta technologia jest zauważalnie gorsza od AMOLED.
  • LTPS. Zaawansowany typ matryc TFT, stworzony w oparciu o tzw. niskotemperaturowy krzem polikrystaliczny. Umożliwia on łatwe tworzenie ekranów o bardzo dużym zagęszczeniu pikseli (ponad 500 PPI - patrz wyżej), osiągając wysokie rozdzielczości nawet przy niewielkiej przekątnej. Ponadto część elektroniki sterującej można osadzić bezpośrednio w matrycę, zmniejszając całkowitą grubość wyświetlacza. Główną wadą LTPS jest stosunkowo wysoki koszt, lecz w dzisiejszych czasach takie ekrany można spotkać nawet w niedrogich smartfonach.
  • S-PureLED. Technologia stworzona przez firmę Sharp i używana głównie w jej smartfonach. Właściwie technologia samych matryc w tym przypadku nazywa się S-CG Silicon TFT, natomiast S-PureLED to nazwa specjalnej warstwy, używanej w celu zwiększenia przezroczystości. S-CG Silicon TFT jest pozycjonowane przez twórców jako modyfikacja opisanej powyżej technologii LTPS, która pozwala na dalsze zwiększenie rozdzielczości wyświetlacza i jednocześnie zgromadzenie w nim większej ilości elektroniki sterującej (aż do „procesora na szkle” ) bez zwiększania grubości. Oczywiście takie ekrany nie są tanie.
  • E-Ink. Matryce oparte na tzw. „elektronicznym tuszu” - technologii upowszechnionej przede wszystkim w e-bookach. Główną cechą takiego ekranu jest to, że przy jego działaniu energia jest zużywana tylko na zmianę obrazu; nieruchomy obraz nie wymaga zasilania i może pozostać na wyświetlaczu nawet wtedy, gdy zasilania brak. Dodatkowo matryce E-Ink domyślnie nie świecą się same, a odbijają światło zewnętrzne - tak że podświetlenie własne nie jest obowiązkowe (choć można je stosować do pracy w półmroku i ciemności). Wszystko to zapewnia znaczne oszczędności energii; a dla niektórych użytkowników takie ekrany są czysto subiektywnie wygodniejsze i mniej męczące niż tradycyjne matryce. Z drugiej strony technologia E-Ink ma również poważne wady - przede wszystkim długi czas reakcji, a także złożoność i wysoki koszt kolorowych wyświetlaczy w połączeniu z niską jakością kolorów na nich. W świetle tego, takie matryce stały się bardzo rzadkim i egzotycznym wariantem, prawie nie spotykanym w dzisiejszych smartfonach.
— Częstotliwość odświeżania. Maksymalna częstotliwość odświeżania wyświetlacza, innymi słowy, najwyższa częstotliwość odświeżania, którą może on efektywnie odtworzyć. Im wyższy wskaźnik ten - tym wygładzony i płynny jest obraz, tym mniej zauważalny jest „efekt pokazu slajdów” i rozmycie obiektów przy poruszaniu się na ekranie. Jednocześnie należy pamiętać, że częstotliwość odświeżania 60 Hz, obsługiwana przez prawie każdy współczesny smartfon, jest w zupełności wystarczająca do większości zadań; nawet filmiki w wysokiej rozdzielczości obecnie prawie nie używają dużej liczby klatek na sekundę. Dlatego częstotliwość odświeżania w naszym katalogu jest specjalnie określana głównie dla ekranów zdolnych zapewnić więcej niż 60 Hz (w niektórych modelach - do 240 Hz). Tak wysoka częstotliwość może być przydatna w grach i niektórych innych zadaniach, poprawia też ogólne wrażenia z systemu operacyjnego i interfejsu aplikacji - ruchome elementy w takich interfejsach poruszają się płynnie i bez rozmycia.

— HDR. Technologia, która rozszerza dynamiczny zakres ekranu. W danym przypadku chodzi o zakres jasności - innymi słowy obecność HDR pozwala na wyświetlenie na ekranie jaśniejszej bieli i ciemniejszej czerni niż na wyświetlaczach bez tej technologii. W praktyce daje to zauważalną poprawę jakości obrazu: poprawia się nasycenie i niezawodność odwzorowania kolorów, a detale w bardzo jasnych lub bardzo ciemnych częściach kadru nie „toną” w bieli lub czerni. Jednak wszystkie te korzyści stają się zauważalne tylko wtedy, gdy odtwarzana treść była oryginalnie nagrana w HDR. Obecnie stosuje się kilka odmian tej technologii, oto ich cechy:
  • HDR10. Historycznie pierwszy z konsumenckich formatów HDR, jest dziś niezwykle popularny: w szczególności jest obsługiwany przez prawie wszystkie serwisy przesyłania strumieniowego z treścią HDR i jest używany jako standard dla takich treści na dyskach Blu-ray. Zapewnia 10-bitową głębię kolorów (ponad miliard odcieni). Jednocześnie urządzenia z tą technologią mogą również odtwarzać treści HDR10 + (patrz poniżej) - chyba że ich jakość będzie ograniczona możliwościami oryginalnego HDR10.
  • HDR10+. Ulepszona wersja HDR10. Przy tej samej głębi koloru (10 bitów) wykorzystuje tzw. dynamiczne metadane, które pozwalają na przekazywanie informacji o głębi koloru nie tylko dla grup po kilka klatek, lecz także dla pojedynczych klatek. Zapewnia to dodatkową poprawę reprodukcji kolorów.
  • Dolby Vision. Zaawansowany standard używany szczególnie w kinematografii profesjonalnej. Pozwala na osiągnięcie 12-bitowej głębi kolorów (prawie 69 miliardów odcieni), wykorzystuje wspomniane wyżej dynamiczne metadane, a także umożliwia przesyłanie dwóch wersji obrazu jednocześnie w jednym strumieniu wideo - HDR i normalnym (SDR). Jednocześnie Dolby Vision bazuje na tej samej technologii co HDR10, więc we współczesnym sprzęcie format ten często łączy się z HDR10 czy HDR10+.


Obsługa DC Dimming. Dosłownie z angielskiego, Direct Current Dimming jest tłumaczone jako ściemnianie prądem stałym. Technologia ta ma na celu zminimalizowanie migotania w ekranach OLED i AMOLED, co z kolei odciąża aparat wzrokowy użytkownika i chroni wzrok. Efekt „bez migotania” uzyskuje się poprzez bezpośrednie sterowanie jasnością podświetlanych diod LED poprzez zmianę wielkości podawanego do nich napięcia. Dzięki temu zapewnione jest zmniejszenie intensywności świecenia ekranu. — Zakrzywiony ekran. Ekran z zagiętymi krawędziami, na które wchodzi wyświetlany obraz. Innymi słowy, w danym przypadku zakrzywione jest nie tylko szkło, lecz także część aktywnej matrycy. Wyświetlacze, w których obie krawędzie są zakrzywione, nazywane są „szkłem 2.5D”; istnieją też urządzenia, w których ekran jest zagięty tylko z jednej strony. W każdym razie ta cecha szczególna nadaje smartfonowi ciekawy wygląd i poprawia widoczność obrazu przy patrzeniu z określonych kątów, jednak znacząco wpływa to na koszt i może powodować niedogodności przy trzymaniu (zwłaszcza bez etui). Dlatego przed zakupem modelu z takim wyposażeniem najlepiej potrzymać urządzenie w dłoni i upewnić się, że jest ono wystarczająco wygodne.

— Gorilla Glass. Specjalne wytrzymałe szkło, stosowane jako pokrycie ochronne wyświetlacza. Charakteryzuje się wysoką wytrzymałością i odpornością na zarysowania, pod względem tych wskaźników wielokrotnie przewyższa zwykłe szkło. Jest szeroko stosowane w smartfonach, w których duże rozmiary ekranu stawiają zwiększone wymagania niezawodności pokrycia. Różne wersje tego szkła można spotkać we współczesnych telefonach, oto cechy różnych wariantów:
  • Gorilla Glass v3. Najstarsza z aktualnych wersji - wydana w roku 2013; obecnie występuje głównie w stosunkowo niedrogich lub przestarzałych urządzeniach. Niemniej jednak pokrycie to ma niewątpliwe zalety: jest to pierwsza generacja Gorilla Glass, w której twórcy położyli zauważalny nacisk na odporność na zarysowania od kluczy, monet i innych przedmiotów, z którymi telefon może „zderzyć się” w kieszeni lub torbie. Pod tym względem wersja 3 pozostawała bezkonkurencyjna aż do wydania Gorilla Glass Victus w 2020 roku.
  • Gorilla Glass v4. Wersja wydana w 2014 roku. Kluczową cechą przy opracowywaniu tego pokrycia stał się nacisk na odporność na uderzenia (podczas gdy poprzednie generacje skupiały się głównie na odporności na zarysowania). W efekcie szkło jest dwukrotnie mocniejsze niż w wersji 3, a jego grubość wynosi zaledwie 0,4 mm. Natomiast odporność na zarysowania, w porównaniu do swojego poprzednika, nieznacznie spadła.
  • Gorilla Glass v5. Udoskonalenie "goryla", wprowadzone w 2016 roku w celu dalszego zwiększenia odporności na uderzenia. Według twórców, szkło wersji v5 okazało się 1,8 razy mocniejsze od poprzednika, pozostało nienaruszone w 80% upadków z wysokości 1,6 m „twarzą w dół” na chropowatą powierzchnię (i gwarantowana odporność na uderzenia 1,2 m). Odporność na zarysowania również nieco się poprawiła, lecz ten materiał w dalszym ciągu nie spełnia wymagań v3.
  • Gorilla Glass v6. Wersja wprowadzona w 2018 roku. W przypadku tego pokrycia deklaruje się 2-krotny wzrost wytrzymałości w porównaniu z poprzednikami, a także odporność na wielokrotne upadki na twardą powierzchnię (w testach szkło v6 z powodzeniem wytrzymało 15 upadków z wysokości 1 m). Maksymalna wysokość upadku (pojedynczego) z gwarantowanym zachowaniem stanu jest deklarowana na poziomie 1,6 m. Nie mniej jednak odporność na zarysowania nie została ulepszona.
  • Gorilla Glass 7. Oryginalna nazwa Gorilla Glass Victus - patrz poniżej.
  • Gorilla Glass Victus. Następca Gorilla Glass 6, wydany latem 2020 roku. W tym wydaniu twórcy zwrócili uwagę nie tylko na zwiększenie ogólnej wytrzymałości, lecz także na poprawę odporności na zarysowania. Pod względem tego ostatniego wskaźnika Victus przewyższa nawet wersję v3, nie wspominając o bardziej wrażliwych materiałach (a w porównaniu z v6 zadeklarowano dwukrotne zwiększenie odporności na zarysowania). Jeśli chodzi o wytrzymałość, pozwala wytrzymać pojedyncze upadki z wysokości do 2 m, a także do 20 kolejnych upadków z wysokości 1 m.

Ochrona ekranu

Do ochrony ekranów nowoczesnych smartfonów z reguły stosuje się specjalne, bardzo wytrzymałe szkło. Powłoka ta może być kilkakrotnie mocniejsza niż zwykłe szkło i jest wysoce odporna na zarysowania i uderzenia.

Z nielicznymi wyjątkami w segmencie urządzeń mobilnych dominują produkty Corning – osławione szkła Gorilla Glass. Można spotkać kilka generacji tego szkła, oto ich główne cechy:

— Szkło Gorilla 3 (2013). Pomimo swojego „czcigodnego wieku” jest bardzo odporne na zarysowania – wskaźnik ten został przekroczony dopiero 7 lat później w wersji Victus.

— Szkło Gorilla 4 (2014). W porównaniu do poprzedniej wersji posiada dwukrotnie większą odporność na uderzenia w połączeniu z mniejszą grubością (0,4 mm). Jednak odporność na zarysowania nieco spadła.

— Szkło Gorilla 5 (2016). Udoskonalenia w tej wersji obejmują dalsze zwiększenie wytrzymałości — jest ona 1,8 razy większa od poprzedniczki i wytrzymuje upadki z wysokości 1,2 m (a także do 80% upadków z wysokości 1,6 m, co w przybliżeniu równa do poziomu ludzkiego ucha).

Szkło Gorilla v6 (2018). Kolejna wersja z naciskiem na zwiększenie odporności na uderzenia. Dwukrotnie mocniejsza niż wersja 5, gwarantuje odporność na pojedyncze upadki z wysokości 1,6 m i wielokrotne upadki (do 15 razy z rzędu) z wysokości 1 m.

— Szkło Gorilla v7 (2020). Siódma wersja szkła ochronnego firmy Corning nosi nazwę Gorilla Glass Victus i zadebiutował...a w 2020 roku. Więcej szczegółów znajdziesz poniżej.

Szkło Gorilla Victus (2020). To pierwsza po v3 wersja Gorilla Glass, w której twórcy poświęcili tyle samo uwagi odporności na zarysowania, co ochronie przed wstrząsami. Pod tym parametrem Victus przewyższa nawet starą, dobrą wersję v3 – przypomnijmy, że to ona od 2013 roku górowała nad szkłami „goryla” pod względem odporności na zarysowania. Jeśli chodzi o porównanie z poprzednią wersją v6, tutaj wzrost odporności na zarysowania nastąpił około 2-krotnie. Z kolei odporność na wstrząsy deklarowana jest na poziomie 2 m przy upadku pojedynczym i 1 m przy upadku wielokrotnym (do 20 razy z rzędu).

— Szkło Gorilla Victus+ (2022). Ulepszona modyfikacja szkła ochronnego Gorilla Glass Victus, zbliżona do ceramiki pod względem odporności na zarysowania. Zatem, zgodnie z mineralną skalą twardości Mohsa, szkło zaczyna zarysowywać się od 7/10, podczas gdy oryginalna wersja Victus zarysowuje się od 6/10.

— Szkło Gorilla Victus 2 (2022). Główny nacisk w drugiej edycji Gorilla Glass Victus położono na zapewnienie maksymalnej ochrony w przypadku upadku smartfona na betonową powierzchnię. Szkło wytrzymuje upadek na betonową podłogę z wysokości 1 m. Również dla tej generacji deklarowana jest odporność na wstrząsy w przypadku pojedynczego upadku z wysokości 2 metrów oraz wielokrotnych upadków na twarde powierzchnie z wysokości 1 m (do 20 razy). Przy opracowywaniu szkła ochronnego Gorilla Glass Victus 2 wzięto pod uwagę przyrost wagi i wzrost wymiarów nowoczesnych smartfonów.

— Gorilla Glass Armor (2024). Bardzo wytrzymałe szkło hartowane firmy Corning o zwiększonej odporności na zarysowania. Szkło hartowane Gorilla Glass Armor redukuje odblaski ekranu smartfona o około 75%, poprawiając tym samym jakość obrazu. Jedna czwarta składników "receptury" szkła hartowanego to materiały pochodzące z recyklingu, co przyczynia się do dbania o środowisko.

Częstotliwość procesora

Częstotliwość taktowania procesora, w który wyposażone jest urządzenie. W przypadku procesorów wielordzeniowych, które są powszechnie stosowane w nowoczesnych smartfonach, przyjmuje się częstotliwość każdego pojedynczego rdzenia; a jeśli procesor ma rdzenia o różnych częstotliwościach (patrz „Liczba rdzeni”) - z reguły podawana jest wartość maksymalna.

Ogólnie rzecz biorąc, wydajne smartfony charakteryzują się wysokimi częstotliwościami procesora. Należy jednak pamiętać, że parametr ten sam w sobie nie jest bezpośrednio związany z możliwościami procesora: na rzeczywistą moc chipa wpływa wiele innych jego funkcji, a często rozwiązanie budżetowe z dużą częstotliwością taktowania okazuje się mniej produktywne niż droższy i jednocześnie wydawałoby się wolniejszy procesor. Ponadto ogólna wydajność systemu zależy bezpośrednio od całego zestawu innych czynników - przede wszystkim od ilości pamięci RAM. Dlatego przy ocenie smartfona należy kierować się nie tyle częstotliwością procesora, ile ogólną charakterystyką systemu i wskaźnikami wizualnymi, takimi jak wyniki testów (patrz poniżej).

Maks. pojemność karty

Największa pojemność karty pamięci, z którą telefon może poprawnie współpracować. Aby uzyskać więcej informacji na temat samych kart, zobacz „Gniazdo kart pamięci”; należy podkreślić, że pojemne nośniki często korzystają z zaawansowanych technologii, które nie są obsługiwane przez wszystkie urządzenia, a czasami telefony po prostu nie mają wystarczającej mocy do przetwarzania dużych ilości danych. Dlatego dla wygody wyboru maksymalna obsługiwana pojemność jest podawana w naszym katalogu.

W praktyce zdarzają się sytuacje, w których niektóre urządzenia mogą przekraczać podaną specyfikację. Warto jednak skupić się na oficjalnych danych, ponieważ jeśli zostaną one przekroczone, normalna praca karty nie jest gwarantowana.

Chłodzenie cieczą

System chłodzenia wodnego smartfona ma za zadanie poprawić efektywność odprowadzania ciepła. Dobre chłodzenie pozwala smartfonowi na pewną pracę przy szczytowym obciążeniu, bez spowolnień i opóźnień. Wykorzystanie radiatora cieczowego pozwala poprawić chłodzenie średnio o 4-6 °C w porównaniu do chłodnic pasywnych. Chłodzenie wodne jest stosowane w wysokowydajnych smartfonach, wyposażonych w wydajny procesor, dobry podsystem wideo i wiele koprocesorów sztucznej inteligencji.

Chłodzenie wodne smartfona może mieć różne implementacje konstrukcyjne. Najczęściej stosowaną koncepcją jest radiator wypełniony czynnikiem chłodniczym. W takiej chłodnicy ciecz paruje, nagrzewając się i skraplając w oddzielnym wymienniku ciepła, po czym ciecz ponownie trafia do chłodnicy. Oczywiście zwiększenie wydajności chłodzenia odbywa się kosztem zwiększenia wymiarów smartfona.

Wyniki testów

Wyniki testów są podawane dla młodszego modelu w linii lub dla konkretnego modelu, co ma na celu lepsze zrozumienie wydajności modeli telefonów, jeśli porównujesz telefony według tych parametrów. Na przykład dla modelu 128 GB są wyniki testów, a dla modelu 256 GB nie ma informacji w sieci, w obu modelach zobaczysz tę samą wartość, co pozwoli zrozumieć ogólną wydajność urządzenia. Natomiast jeżeli redakcja dysponuje informacjami dla każdego poszczególnego modelu, to wyniki testów zostaną wpisane dla każdego modelu, a model z dużą ilością pamięci RAM będzie miał większe wartości.

AnTuTu Benchmark

Wynik pokazany przez urządzenie po przejściu testu wydajności (benchmarku) AnTuTu Benchmark.

AnTuTu Benchmark to kompleksowy test zaprojektowany specjalnie z myślą o urządzeniach mobilnych, przede wszystkim smartfonach i tabletach. Sprawdzając bierze pod uwagę wydajność procesora, pamięci, grafiki oraz układów wejścia/wyjścia, dając w ten sposób w miarę jasny obraz możliwości systemu. Im lepszy wynik, tym więcej punktów zostanie przyznanych na podstawie uzyskanych wyników. A według rankingu AnTuTu smartfony, które osiągnęły ponad 900 tys. punktów, uznawane są za wysokowydajne.

Jak każdy benchmark, ten test nie zapewnia absolutnej dokładności: to samo urządzenie może pokazywać różne wyniki, zwykle z odchyleniami w granicach 5 – 7%. Odchylenia te zależą od wielu czynników niezwiązanych bezpośrednio z systemem - od obciążenia urządzenia programami innych firm po temperaturę powietrza podczas testów. O istotnej różnicy między obydwoma modelami możemy więc mówić tylko wtedy, gdy różnica w ich wskaźnikach wykracza poza wspomniany błąd.

Geekbench

Wynik wyświetlany przez urządzenie po przejściu testu wydajności (benchmark) Geekbench.

Geekbench to wyspecjalizowany test porównawczy przeznaczony dla procesorów. Od wersji 4.0 test dotyczy także akceleratorów graficznych, pod koniec 2019 roku benchmark został wydany pod numerem „5”. W specyfikacji gadżetów przenośnych podawane są zwykle dane o procesorze. Podczas testowania Geekbench symuluje obciążenia powstające przy wykonywaniu rzeczywistych zadań oraz uwzględnia zarówno możliwości pojedynczego rdzenia, jak i wydajność wielu rdzeni jednocześnie. Dzięki temu ostateczne wyniki są dobrym wskaźnikiem możliwości procesora w codziennym użytkowaniu. Ponadto test jest wieloplatformowy i umożliwia porównanie procesorów różnych urządzeń (smartfony, tablety, laptopy, komputery PC). W podstawowych informacjach podawane są tylko wartości testu wielordzeniowego dla procesora.

Obiektyw główny

Specyfikacja głównego obiektywu aparatu tylnego, zainstalowanego w telefonie. W modelach z kilkoma obiektywami (patrz „Liczba obiektywów”) „oczko” jest uważane za główne, które odpowiada za podstawowe możliwości nagrywania i nie ma wyraźnej specjalizacji (szerokokątna, teleobiektyw itp.). Mogą tutaj wskazywać się cztery główne parametry: rozdzielczość, przysłona (dość powszechna jest optyka o wysokim współczynniku przysłony), ogniskowa, dodatkowe dane dotyczące matrycy.

Rozdzielczość (w megapikselach, MP)
Rozdzielczość matrycy zastosowanej w głównym obiektywie. Warianty budżetowe są wyposażone w moduł 8 MP i poniżej wiele modeli ma aparat 12 MP / 13 MP, także ostatnio popularna jest tendencja do zwiększania liczby megapikseli. Często w smartfonach można spotkać główny fotomoduł na 48 MP, 50 MP< /a>, 64 MP, a nawet 108 MP a> .

Maksymalna rozdzielczość uzyskanego obrazu zależy bezpośrednio od rozdzielczości czujnika; a wysoka rozdzielczość „obrazu” pozwala z kolei na lepsze wyświetlenie drobnych szczegółów. Z drugiej strony samo zwiększenie liczby megapikseli może prowadzić do pogorszenia ogólnej jakości obrazu - ze względu na mniejszy rozmiar każdego...pojedynczego piksela poziom szumów wzrasta. W rezultacie bezpośrednia rozdzielczość aparatu ma niewielki wpływ na jakość fotografowania - więcej zależy od fizycznych rozmiarów matrycy, cech optyki i różnych trików konstrukcyjnych zastosowanych przez producenta.

Wartość przysłony
Wartość przysłony opisuje zdolność obiektywu do przepuszczania światła. Jest zapisywany jako liczba ułamkowa, na przykład f/1,9. Co więcej, im większa liczba w mianowniku, tym niższy wartość przysłony, tym mniej światła przechodzi przez optykę, pod warunkiem że pozostałe parametry są podobne. Oznacza to, że na przykład obiektyw f/2.6 będzie ciemniejszy niż f/1.9.

Wysoki wartość przysłony zapewnia aparatowi szereg zalet. Po pierwsze, poprawia wydajność przy słabym oświetleniu. Po drugie, możliwe staje się nagrywanie przy niskich czasach otwarcia migawki, minimalizując efekt „drgania” i rozmycia poruszających się obiektów w kadrze. Po trzecie, z optyką o dużym współczynniku przysłony łatwiej jest uzyskać piękne rozmycie tła („bokeh”) - na przykład przy nagrywaniu w trybie portretowym.

Ogniskowa(w milimetrach)
Ogniskowa to odległość między czujnikiem a środkiem obiektywu (ogniskowana na nieskończoność), przy której na matrycy uzyskuje się najostrzejszy obraz. Jednakże w przypadku smartfonów, w specyfikacji wskazuje się nie rzeczywista, lecz tzw. ekwiwalentna ogniskowa (EO) - wskaźnik umowny przeliczany za pomocą specjalnych formuł. Wskaźnik ten można wykorzystać do oceny i porównania aparatów z różnymi rozmiarami matryc (nie można do tego wykorzystać faktycznej ogniskowej, ponieważ przy innym rozmiarze czujnika ta sama faktyczna ogniskowa będzie odpowiadać różnym kątom widzenia).

Tak czy inaczej, kąt widzenia i stopień powiększenia zależą bezpośrednio od EO: większa ogniskowa daje mniejszy kąt widzenia i większy rozmiar pojedynczych obiektów, które wpadają w kadr, a także zmniejszenie tej odległości z kolei pozwala na objęcie większej przestrzeni. W większości nowoczesnych smartfonów ogniskowa głównego aparatu wynosi od 13 do 35 mm; w porównaniu z optyką tradycyjnych aparatów obiektywy z EO do 25 mm można zaklasyfikować jako szerokokątne, powyżej 25 mm - jako modele uniwersalne „z nastawieniem na nagrywanie szerokokątne”. Takie wartości dobierane są z uwzględnieniem faktu, że smartfony często wykorzystywane są do nagrywania w ciasnych warunkach, gdy na niewielkiej odległości w kadrze trzeba zmieścić dość dużą przestrzeń. Powiększanie obrazu w razie potrzeby najczęściej odbywa się cyfrowo - ze względu na dostarczenie megapikseli na matrycę; lecz są też modele z zoomem optycznym (patrz poniżej) - dla nich nie podaje się jednej wartości, natomiast cały zakres roboczy EO (przypomnijmy, że zoom optyczny jest realizowany się poprzez zmianę ogniskowej).

Kąt widzenia(w stopniach) Kąt widzenia charakteryzuje wielkość przestrzeni zajmowanej przez obiektyw, a także wielkość poszczególnych obiektów „widzianych” przez kamerę. Im większy ten kąt, tym większa część sceny wpada w kadr, jednak tym mniejsze są poszczególne obiekty na obrazie. Kąt widzenia jest bezpośrednio związany z ogniskową (patrz wyżej): zwiększenie tej odległości zawęża pole widzenia obiektywu i odwrotnie.

Należy pamiętać, że parametr ten jest powszechnie uważany za ważny dla profesjonalnego używania aparatu, lecz nie dla fotografii amatorskiej. Dlatego dane o kącie widzenia podawane są głównie dla smartfonów wyposażonych w zaawansowane aparaty - m.in. w celu podkreślenia w ten sposób wysokiej klasy tych aparatów. Jeśli chodzi o konkretne wartości, to dla głównego obiektywu mieszą się one zwykle w zakresie od 70° do 82° - odpowiada to ogólnej specyfice takiej optyki (nagrywanie uniwersalne z naciskiem na sceny ogólne i szerokie objęcie na krótkich dystansach).

Dodatkowe dane dotyczące matrycy
Dodatkowe informacje dotyczące matrycy zainstalowanej na głównym obiektywie. Ta pozycja może obejmować zarówno rozmiar przekątnej (w calach), jak i model czujnika, a czasami oba parametry jednocześnie. W każdym razie takie dane są podawane, jeśli urządzenie jest wyposażone w wysokiej jakości matrycę, która wyraźnie wyróżnia się na ogólnym tle. W przypadku modelu wszystko jest dość proste: znając nazwę czujnika, można znaleźć szczegółowe dane na jego temat. Rozmiar należy rozważyć bardziej szczegółowo.

Przekątna matrycy jest tradycyjnie podawana w ułamkowych częściach cala - na przykład czujnik na 1/2,3 "będzie większy niż 1/2,6". Większe czujniki są uważane za bardziej zaawansowane, ponieważ zapewniają lepszą jakość obrazu przy tej samej rozdzielczości. Logika tutaj jest prosta - ze względu na dużą powierzchnię czujnika, każdy pojedynczy piksel jest również większy i dostaje więcej światła, co poprawia czułość i redukuje szumy. Rzeczywista jakość obrazu będzie oczywiście zależała również od szeregu innych parametrów, lecz generalnie większy rozmiar matrycy oznacza zazwyczaj bardziej zaawansowany aparat. W zaawansowanych flagowcach fotograficznych mogą występować matryce o fizycznym rozmiarze 1”, co jest porównywalne z czujnikami obrazu stosowanymi w topowych aparatach kompaktowych z obiektywami stałoogniskowymi.
Dynamika cen
Xiaomi Redmi Note 12 Pro 4G często porównują
Xiaomi Redmi Note 10 Pro często porównują