Tryb nocny
Polska
Katalog   /   Sprzęt i narzędzia ogrodnicze   /   Urządzenia pomiarowe   /   Multimetry

Porównanie Mastech MS2109A vs Mastech MS8332C

Dodaj do porównania
Mastech MS2109A
Mastech MS8332C
Mastech MS2109AMastech MS8332C
od 280 zł
Produkt jest niedostępny
od 100 zł
Produkt jest niedostępny
TOP sprzedawcy
Główne
Oświetlenie strefy chwytu
Przyrządmiernik cęgowymultimetr
Rodzajcyfrowycyfrowy
Rodzaje pomiarów
Wykonywane pomiary
napięcie
prąd
rezystancja
pojemność
temperatura
częstotliwość
współczynnik wypełnienia impulsu
napięcie
prąd
rezystancja
pojemność
 
częstotliwość
współczynnik wypełnienia impulsu
Specyfikacja
Rodzaj prąduAC / DCAC / DC
Rodzaj napięciastałe / przemiennestałe / przemienne
Napięcie DC min.600 mV400 mV
Napięcie DC max.600 V600 V
Dokładność pomiaru (V⁻)0.7 %
Napięcie AC min.6000 mV4000 mV
Napięcie AC max.600 V600 V
Prąd DC min.400 μA
Prąd DC max.600 А0.4 А
Prąd AC min.400 μA
Prąd AC max.600 А0.4 А
Rezystancja min.600 Ohm400 Ohm
Rezystancja max.60 MOhm40 MOhm
Maks. wyświetlana wartość59993999
Szerokość bitowa wyświetlacza3 5/63 3/4
Funkcje i możliwości
Funkcje
tester diod
pomiar ciągłości obwodu
bezkontaktowe wykrywanie napięcia (NCV)
automatyczny wybór zakresu pomiarowego
 
tester diod
pomiar ciągłości obwodu
 
automatyczny wybór zakresu pomiarowego
wyłącznik czasowy
Wyposażenie
akumulatorowe
sondy pomiarowe
walizka (torba)
akumulatorowe
sondy pomiarowe
 
Dane ogólne
Podświetlany wyświetlacz
Wbudowana latarka
Nieodłączane sondy
Zasilanieakumulatoroweakumulatorowe
Typ akumulatora3xAAA2xAAA
Wymiary218x78x35 mm110x58x33 mm
Waga239 g150 g
Data dodania do E-Kataloglipiec 2019lipiec 2019

Przyrząd

- Woltomierz. Napięcie elektryczne jest mierzone odpowiednio w woltach, urządzenia tego typu są przeznaczone przede wszystkim do pomiaru napięcia, a najczęściej - tylko do tego i do niczego innego. Jednak poza napięciem w praktyce często trzeba zmierzyć się z wieloma innymi parametrami, a nowoczesne technologie umożliwiają tworzenie kompaktowych, funkcjonalnych i jednocześnie niedrogich urządzeń uniwersalnych. Dlatego czyste woltomierze są spotykane i używane stosunkowo rzadko, a większość użytkowników elektrycznych woli używać multimetrów (patrz poniżej).

- Multimetr. Urządzenia tego typu nazywane są też potocznie „testerami”. Multimetr to wielofunkcyjne urządzenie pomiarowe, które łączy w sobie funkcje co najmniej woltomierza, amperomierza i omomierza - czyli jest zdolne do pomiaru napięcia, prądu i rezystancji. Dodatkowo mogą być zapewnione inne funkcje - na przykład pomiar pojemności, indukcyjności, temperatury (patrz "Funkcje"). Do pomiarów zwykle używa się pary sond. Ze względu na swoją wszechstronność w połączeniu ze stosunkowo niskim kosztem, multimetry są najpopularniejszym rodzajem przyrządów pomiarowych, mogą być wykorzystywane zarówno do prostych zadań, takich jak sprawdzanie elementów radiowych czy domowych sieci, jak i do pracy ze złożonymi obwodami.

- Miernik cęgowy. Początkowo takie cęgi to specyficzne urządzenia, które pozwalają mierzyć na...tężenie prądu w sposób bezkontaktowy, bez dotykania przewodów i ingerowania w działanie obwodu. Działają one w następujący sposób: szczypce zakrywają drut i ze względu na charakterystykę otaczającego go pola magnetycznego mierzą natężenie prądu. W ten sposób można mierzyć zarówno prądy AC, jak i DC (chociaż konkretne możliwości mogą oczywiście różnić się w zależności od modelu). Oprócz pomiarów bez przerywania obwodu zaletą cęgów jest możliwość pracy z dużymi prądami i napięciami - setki amperów w sieciach setek woltów; a same pomiary są bezpieczniejsze niż przy zwykłej metodzie kontaktowej. Z drugiej strony dokładność pomiaru jest stosunkowo niska – zwykle nie wyższa niż klasa 2,5. Ponadto wiarygodność wyniku silnie zależy od prawidłowego położenia cęgów, a przy prądzie zmiennym - także od równomierności sinusoidy (jednak w zaawansowanych modelach mogą być przewidziane specjalne obwody kompensujące tę zależność). Ponadto pomiar bezkontaktowy nie zawsze ma zastosowanie wyłącznie w praktyce. Zaciski mogą być wykonane w postaci specjalistycznego urządzenia, jednak najczęściej urządzenia tego typu wykonane są w postaci multimetrów, uzupełnione o obwód magnetyczny do pomiarów bezstykowych i mogą również pracować zwykłą metodą stykową.

- Oscyloskop. Oscyloskopy to przyrządy przeznaczone do obserwacji, pomiaru i rejestracji parametrów sygnału elektrycznego. Charakterystyczną cechą klasycznego oscyloskopu jest ekran, na którym urządzenie buduje wykres sygnału dostarczanego na wejście. Możliwa jest jednoczesna praca z kilkoma sygnałami (więcej szczegółów patrz "Liczba kanałów"). Jednak niektóre modele nie mają własnego wyświetlacza i są podłączone do komputera w celu wykonania pomiarów (patrz „Oscyloskop USB”). Wiele parametrów sygnału można określić już za pomocą jego wykresu - ten wykres jest zwykle uzupełniany skalą współrzędnych, która wyraźnie ilustruje częstotliwość, amplitudę itp.; jednak oscyloskop może również wyprowadzać niektóre parametry, takie jak kąt fazowy, jako określone dane liczbowe. Nowoczesne oscyloskopy mogą pracować na częstotliwościach do gigaherców włącznie i najczęściej wykorzystują obwody cyfrowe (patrz „Typ”), dzięki czemu przewyższają klasyczne instrumenty analogowe pod względem dokładności.

- skopomierz. Uniwersalne urządzenia, które łączą w jednym przypadku zarówno multimetr, jak i oscyloskop. Oba te typy są opisane bardziej szczegółowo powyżej; tutaj zauważamy, że takie połączenie zapewnia bardzo rozbudowaną funkcjonalność, jednak skopmetry nie są tanie, a ich dokładność pomiaru jest niższa niż w przypadku specjalistycznych multimetrów i/lub oscyloskopów.

Wykonywane pomiary

Parametry, które mogą być mierzone przez urządzenie.

- Napięcie. Napięcie (różnica potencjałów między dwoma punktami w obwodzie), mierzone w woltach. Jeden z podstawowych parametrów elektrycznych, obsługiwany przez wszystkie typy przyrządów, z wyjątkiem oscyloskopów (patrz „Urządzenie”). Do pomiaru wykorzystywane jest połączenie równoległe. W urządzeniach analogowych (patrz „Rodzaj”) pomiar napięcia można przeprowadzić bez zasilania.

- Aktualny. Siła prądu przepływającego przez określony odcinek obwodu; mierzone w amperach. Istnieją dwa sposoby pomiaru aktualnej siły: tradycyjny i bezkontaktowy. Pierwszy jest dostępny w prawie wszystkich urządzeniach z funkcją amperomierza, w tym celu konieczne jest otwarcie obwodu i szeregowe przekształcenie urządzenia w szczelinę (ponadto przy analogowej zasadzie działania amperomierz nie potrzebuje zasilania). Druga metoda stosowana jest w cęgach prądowych (patrz "Urządzenie").W większości przypadków modele są w stanie mierzyć prąd stały i przemienny.

- Opór. Odporność określonego elementu na stały prąd elektryczny; mierzone w omach. Należy zauważyć, że w tym przypadku mówimy o tradycyjnych pomiarach, które nie wiążą się z ultrawysokimi rezystancjami charakterystycznymi dla izolacji (w izolacji parametr ten sp...rawdzany jest odrębną metodą, więcej szczegółów poniżej). Pomiary rezystancji wykonuje się w następujący sposób: na sondy urządzenia przykładane jest określone napięcie (niskie, w granicach kilku woltów), po czym są one podawane na miejsce pomiaru - oraz rezystancja badanego odcinka obwodu lub inne obiekt jest obliczany na podstawie prądu płynącego przez utworzony obwód. Dlatego do pracy w trybie omomierza wymagane jest zasilanie - nawet dla instrumentu analogowego.

- Pojemność. Pojemność kondensatora mierzy się w faradach (częściej mikrofaradach i innych jednostkach pochodnych). Sam pomiar odbywa się poprzez doprowadzenie do kondensatora prądu przemiennego. Funkcja ta może być przydatna zarówno do wyjaśnienia pojemności kondensatorów bez oznaczenia (początkowo nieoznaczonych lub z wymazanymi napisami), jak i do sprawdzenia jakości podpisanych części. Na kondensatorach oprócz pojemności nominalnej można wskazać maksymalne odchylenie od nominalnej; jeśli wyniki pomiarów wykraczają poza dopuszczalne odchylenie, lepiej nie używać części. Jeśli odchylenie nie jest wskazane, można założyć, że nie powinno ono przekraczać 10% wartości nominalnej. Na przykład dla części 0,5 μF zakres dopuszczalnych pojemności wyniesie 0,45 - 0,55 μF.

- Temperatura. Pomiar temperatury - zwykle zewnętrznym czujnikiem zdalnym, najczęściej na bagnecie. W elektrotechnice funkcja ta służy do sterowania trybem pracy części wrażliwych na przegrzanie lub które muszą działać w określonym trybie temperaturowym.

- Częstotliwość. Możliwość pomiaru częstotliwości sygnału elektrycznego jest typowa przede wszystkim dla oscyloskopów i skopmetrów, ale można ją również spotkać w innych typach przyrządów - tych samych multimetrach (patrz "Urządzenie"). Z reguły oznacza to możliwość wyświetlania określonych liczb odpowiadających częstotliwości w hercach.

- Cła. Jedną z podstawowych cech jednorodnego sygnału impulsowego jest współczynnik wypełnienia, a mianowicie stosunek jego okresu powtarzania do czasu trwania pojedynczego impulsu. Na przykład, jeśli po każdym impulsie 2 ms następuje przerwa 6 ms, to okres powtarzania sygnału będzie wynosił T = 6 + 2 = 8 ms, a współczynnik wypełnienia wyniesie S = 8/2 = 4. Nie należy mylić cykl pracy z cyklem pracy: Chociaż te możliwości opisują jedną właściwość sygnału, robią to na różne sposoby. Współczynnik wypełnienia jest odwrotnością współczynnika wypełnienia, czyli stosunku długości impulsu do okresu powtarzania (w naszym przykładzie będzie to 2/8 = 25%). Termin ten występuje głównie w źródłach angielskich i tłumaczonych, natomiast w elektrotechnice domowej przyjmuje się termin „cykl pracy”.

- Indukcyjność. Indukcyjność jest głównym parametrem roboczym każdej cewki indukcyjnej. Możliwość zmierzenia tego parametru jest ważna w świetle faktu, że specjaliści i radioamatorzy często samodzielnie wykonują cewki, a określenie charakterystyki części bez specjalnego urządzenia jest niezwykle trudne, jeśli nie niemożliwe. Zasada pomiaru indukcyjności jest podobna do określania pojemności kondensatora (patrz wyżej) - przepuszczania prądu przemiennego przez cewkę i śledzenia jego „odpowiedzi”. Jednak funkcja ta jest znacznie mniej powszechna niż pomiar pojemności.

- Rezystancja izolacji. Rezystancja izolacji przewodów elektrycznych na prąd przemienny. Izolacja z definicji ma wyjątkowo dużą rezystancję, więc tradycyjna metoda pomiaru rezystancji (przy niskim napięciu roboczym, patrz wyżej) nie ma tu zastosowania – prądy byłyby zbyt słabe i niemożliwe byłoby ich dokładne zmierzenie. Dlatego do sprawdzania materiałów izolacyjnych i innych dielektryków nie stosuje się omomierzy, ale specjalnych urządzeń - megaomomierzy (lub multimetrów obsługujących ten tryb). Charakterystyczną cechą megaomomierza jest wysokie napięcie robocze - setki, a nawet tysiące woltów. Na przykład do badania izolacji napięciem roboczym 500 V wymagane jest to samo napięcie megaomomierza, dla materiału 3000 V - urządzenie 1000 V itp., bardziej szczegółowo wymagania dla różnych rodzajów izolacji opisano w źródła specjalne. Aby osiągnąć to napięcie, może być wymagany zewnętrzny moduł wysokonapięciowy, ale wiele multimetrów obsługujących ten rodzaj pomiaru jest w stanie samodzielnie generować krótkotrwałe impulsy wysokiego napięcia z niskonapięciowych źródeł zasilania, takich jak baterie AA lub Krona (patrz " Typ Akumulatora"). Należy pamiętać, że podczas pracy z megaomomierzem należy szczególnie uważnie przestrzegać zasad bezpieczeństwa - ze względu na wysokie napięcie robocze.

- Moc. Moc prądu elektrycznego określają dwa podstawowe parametry - siła prądu i napięcie; z grubsza mówiąc, wolty należy pomnożyć przez ampery, wynikiem będzie moc w watach. Tak więc teoretycznie parametr ten można wyjaśniać bez specjalnej funkcji pomiaru mocy - wystarczy wyjaśniać napięcie i prąd. Jednak niektóre przyrządy pomiarowe mają specjalny tryb, który pozwala natychmiast zmierzyć zarówno podstawowe parametry, jak i automatycznie na ich podstawie obliczyć moc - jest to wygodniejsze i szybsze niż wykonywanie obliczeń osobno. Wiele z tych urządzeń to cęgi (patrz „Urządzenie”) i pomiar prądu przy wyznaczaniu mocy odbywa się w sposób bezkontaktowy, a napięcie mierzone jest klasyczną metodą stykową. Istnieją inne opcje projektowe - na przykład adapter do gniazdka: urządzenie elektryczne jest podłączone do gniazdka przez taki adapter, a multimetr pobiera dane dotyczące prądu i napięcia z adaptera. Przypominamy również, że moc czynna (użyteczna) prądu przemiennego nie zawsze jest równa pełnej – przy obciążeniu pojemnościowym i/lub indukcyjnym część mocy (moc bierna) jest „zużywana” przez kondensatory/cewki. Możesz przeczytać więcej o tych parametrach w dedykowanych źródłach, ale tutaj zauważamy, że różne modele multimetrów mogą mieć różne możliwości pomiaru różnych rodzajów mocy; te punkty nie zaszkodzą wyjaśnić przed zakupem z góry.

- Kąt fazowy. Pomiar stopnia przesunięcia fazowego dwóch sygnałów elektrycznych (lub parametrów sygnału). Specyficzne rodzaje i możliwości takich pomiarów są różne, najbardziej popularne są dwie opcje. Pierwszym z nich jest pomiar różnicy między fazami zasilania trójfazowego, przede wszystkim w celu oceny jego ogólnej jakości. Drugi to oszacowanie przesunięcia fazowego między prądem a napięciem, które występuje, gdy obciążenie reaktywne (pojemnościowe lub indukcyjne) jest przyłożone do źródła prądu przemiennego; stosunek mocy czynnej do mocy pozornej (współczynnik mocy, „cos phi”) bezpośrednio zależy od tego przesunięcia.

- Częstotliwość rotacji. W tym przypadku najczęściej mówimy o możliwości pomiaru prędkości obrotowej silnika spalinowego. W związku z tym takie modele są zwykle określane jako specjalistyczne multimetry samochodowe. Przeznaczone są głównie do diagnostyki i testowania silników nie posiadających elektronicznych układów zapłonowych. Do pomiaru z reguły należy dopasować multimetr do liczby cylindrów silnika i podłączyć go do układu zapłonowego (konkretna metoda podłączenia musi być określona w dokumentacji samochodu).

Zauważ, że nie wszystkie są wymienione na tej liście, ale tylko najpopularniejsze pomiary znalezione we współczesnych multimetrach i innych urządzeniach o podobnym przeznaczeniu. Oprócz nich projekt może przewidywać bardziej specyficzne funkcje - więcej szczegółów w rozdziale „Inne pomiary”.

Napięcie DC min.

Górna granica dolnego podzakresu, w którym urządzenie może mierzyć napięcie DC (patrz „Rodzaj napięcia”).

Zakresy robocze nowoczesnych multimetrów i innych przyrządów pomiarowych są zwykle podzielone na podzakresy. Odbywa się to dla dokładności i wygody pomiarów: na przykład, aby ocenić jakość baterii AA, można ustawić podzakres „do 3 V” - da to dokładność do dziesiątych, a nawet do setnych wolta, nieosiągalne przy pomiarze z wyższym progiem. Minimalne napięcie DC opisuje dokładnie dolny podzakres, przeznaczony do pomiaru najmniejszych wartości napięcia: na przykład, jeśli w tym punkcie określono 2000 mV, oznacza to, że dolny podzakres obejmuje wartości do 2000 mV (tj. do 2 V).

Warto wybierać według tego wskaźnika, biorąc pod uwagę specyfikę planowanego zastosowania: np. urządzenie z niskimi wskaźnikami może przydać się do prac delikatnych, takich jak naprawa komputerów czy telefonów komórkowych, ale do serwisowania elektryki pokładowej sieci samochodowej, nie jest wymagana szczególnie wysoka czułość na napięcie.

Dokładność pomiaru (V⁻)

Dokładność pomiaru zapewniana przez przyrząd.

Zwyczajowo dokładność pomiaru multimetrów wskazuje się najmniejszym błędem (w procentach), jaki urządzenie jest w stanie zapewnić podczas pomiaru prądu stałego. Im mniejsza liczba w tym punkcie, tym odpowiednio wyższa dokładność. Jednocześnie podkreślamy, że jest to najmniejszy błąd (najwyższa dokładność), który zazwyczaj osiągany jest tylko w pewnym zakresie pomiarowym; w innych zakresach dokładność może być niższa. Np. jeżeli w zakresie „1 – 10 V” urządzenie podaje maksymalne odchylenie 0,5%, a w zakresie „10 – 50 V” – 1%, to w charakterystyce będzie wskazane 0,5%. Niemniej jednak, zgodnie z tym wskaźnikiem, całkiem możliwe jest ocenianie i porównywanie nowoczesnych multimetrów. Czyli urządzenie z mniejszym deklarowanym błędem z reguły i generalnie będzie dokładniejsze niż model o podobnych osiągach z większym błędem.

Dane dotyczące dokładności pomiarów w innych zakresach i trybach można podać w szczegółowej charakterystyce urządzenia. Jednak w praktyce ta informacja nie jest wymagana tak często - tylko w przypadku niektórych konkretnych zadań, w których zasadniczo konieczne jest poznanie możliwego błędu.

Napięcie AC min.

Górna granica dolnego podzakresu, w którym urządzenie może mierzyć napięcie przemienne (patrz „Rodzaj napięcia”).

Zakresy robocze nowoczesnych multimetrów i innych przyrządów pomiarowych są zwykle podzielone na podzakresy. Odbywa się to dla dokładności i wygody pomiarów: na przykład, aby sprawdzić transformator, który powinien dawać 6 V na wyjściu, sensowne jest ustawienie podzakresu z górnym progiem 10 V. Zapewni to dokładność do dziesiątych części wolt, nieosiągalny przy pomiarach z wyższym progiem. Minimalne napięcie DC opisuje dokładnie dolny podzakres, przeznaczony do pomiaru najmniejszych wartości napięcia: na przykład, jeśli w tym punkcie określono 2000 mV, oznacza to, że dolny podzakres obejmuje wartości do 2000 mV (tj. do 2 V).

Jeśli urządzenie jest kupowane do pomiarów w sieciach stacjonarnych - domowych przy 230 V lub przemysłowych przy 400 V - można zignorować parametr ten: z reguły minimalne podzakresy nie są w tym przypadku stosowane. Ale do pracy z zasilaczami, transformatorami obniżającymi napięcie i różnymi „cienkimi” urządzeniami elektronicznymi zasilanymi prądem przemiennym niskiego napięcia, warto wybrać model o niższym napięciu minimalnym. Wynika to nie tylko z zakresu pomiarowego: niski próg z reguły wskazuje na dobrą dokładność pomiaru przy niskich napięciach.

Prąd DC min.

Górna granica dolnego podzakresu, w którym urządzenie może mierzyć prąd stały (patrz „Rodzaj prądu”).

Zakresy robocze nowoczesnych multimetrów i innych przyrządów pomiarowych są zwykle podzielone na podzakresy. Odbywa się to dla dokładności i wygody pomiarów: im niższy podzakres, im mniejsze wartości obejmuje, tym wyższa dokładność pomiaru przy niskich wartościach prądu. Minimalny prąd stały opisuje dokładnie dolny zakres, przeznaczony dla najsłabszych wartości prądu: na przykład, jeśli charakterystyka w tym punkcie wskazuje 500 μA, oznacza to, że dolny podzakres pozwala mierzyć prądy od 0 do 500 μA.

Warto wybierać według tego wskaźnika biorąc pod uwagę specyfikę planowanej aplikacji: np. urządzenie z niskimi wskaźnikami może przydać się do prac delikatnych, takich jak naprawa komputerów czy telefonów komórkowych, ale do obsługi pokładowej sieci elektrycznej samochodów, zwłaszcza starych, nie jest wymagana szczególnie wysoka czułość prądowa.

Prąd DC max.

Najwyższy prąd stały (patrz „Rodzaj prądu”), który urządzenie jest w stanie zmierzyć bez przeciążeń i związanych z nimi problemów (takich jak „przepalenie” bezpieczników lub nawet awaria).

Wybierając według tego parametru, warto pamiętać, że nawet przy stosunkowo niskich napięciach prądy mogą być dość wysokie, jeśli źródło zasilania zapewnia odpowiednią moc - na przykład akumulator samochodowy 12 V jest w stanie dostarczyć prądy o wartości setek amperów . W rzeczywistości kompatybilność z wysokimi prądami stałymi jest ważna przede wszystkim dla urządzeń samochodowych; to jednak nie koniec.

Dla bezpiecznego użytkowania pożądane jest, aby mieć pewien margines na maksymalny prąd. Nie zapominaj również, że przed wykonaniem pomiarów musisz ustawić odpowiednie ustawienia.

Prąd AC min.

Górna granica dolnego podzakresu, w którym urządzenie może mierzyć prąd przemienny (patrz „Rodzaj prądu”).

Zakresy robocze nowoczesnych multimetrów i innych przyrządów pomiarowych są zwykle podzielone na podzakresy. Odbywa się to dla dokładności i wygody pomiarów: im niższy podzakres, im mniejsze wartości obejmuje, tym wyższa dokładność pomiaru przy niskich wartościach prądu. Minimalny prąd przemienny opisuje dokładnie dolny zakres, przeznaczony dla najsłabszych wartości prądu: na przykład, jeśli charakterystyka w tym punkcie wskazuje 500 μA, oznacza to, że dolny podzakres pozwala mierzyć prądy od 0 do 500 μA.

Warto wybierać według tego wskaźnika biorąc pod uwagę specyfikę planowanej aplikacji: np. urządzenie z niskimi wskaźnikami może przydać się do prac delikatnych, takich jak naprawa komputerów czy telefonów komórkowych, ale szczególnie wysoka czułość prądowa nie jest wymagana do obsługa domowych sieci energetycznych.

Prąd AC max.

Największy prąd przemienny (patrz „Rodzaj prądu”), który może być mierzony przez to urządzenie. W żadnym wypadku nie należy przekraczać tego parametru – w przeciwnym razie możliwe są różne awarie, od zadziałania zabezpieczenia awaryjnego urządzenia (z dalszą wymianą bezpieczników) po pożar.

Wybierając parametr ten warto pamiętać, że nawet przy stosunkowo niskich napięciach prądy mogą być dość wysokie, jeśli źródło zasilania zapewni odpowiednią moc. Dla bezpiecznego użytkowania pożądane jest, aby mieć pewien margines na maksymalny prąd. Nie zapominaj również, że przed wykonaniem pomiarów musisz ustawić odpowiednie ustawienia.
Mastech MS2109A często porównują