Format plików modeli 3D
Format pliku modeli 3D, który może obsłużyć drukarka.
Projekty modeli 3D tworzone są przy użyciu specjalnych programów (CAD – komputerowe systemy wspomagania projektowania), przy czym programy te mogą wykorzystywać różne formaty plików, często niekompatybilne ze sobą. Informacje te mogą być przydatne zarówno do doboru systemu CAD do konkretnego modelu drukarki, jak i do oceny, czy gotowe projekty nadają się do druku na wybranym modelu.
Wśród najczęstszych obecnie uprawnień (alfabetycznie) są .3ds, .amf, .ctl, .dae, .fbx, .gcode, .obj, .slc, .stl, .ply, .vrml, .zrp.
Kompatybilne oprogramowanie
Programy do budowania modeli, z którymi drukarka jest optymalnie kompatybilna. Oprogramowanie wykorzystywane do drukowania 3D obejmuje zarówno CAD (systemy komputerowego wspomagania projektowania do tworzenia modeli), jak i slicery (programy rozbijające model 3D na osobne warstwy, przygotowujące go do druku). Dlatego ten punkt często wskazuje na całą listę produktów oprogramowania.
Należy pamiętać, że stopień optymalizacji w tym przypadku może być inny: niektóre modele są kompatybilne tylko z zadeklarowanymi programami, ale wiele drukarek może współpracować z systemami CAD innych firm. Niemniej jednak najlepiej wybrać oprogramowanie bezpośrednio deklarowane przez producenta: zmaksymalizuje to możliwości drukarki i zminimalizuje prawdopodobieństwo awarii i „niespójności” w pracy.
Wymiary modelu (WxSxG)
Maksymalne wymiary wyrobu, który można wydrukować na drukarce 3D za jednym razem.
Im większe wymiary modelu — tym szerszy wybór u użytkownika, tym większa różnorodność rozmiarów dostępnych do druku. Z drugiej strony „duże” drukarki zajmują sporo miejsca, a parametr ten znacząco wpływa na koszt urządzenia. Ponadto przy druku FDM/FFF (patrz "Technologia druku") w przypadku dużego modelu pożądane są większe dysze i wyższe szybkości druku — te cechy negatywnie wpływają na szczegóły i obniżają jakość druku małych elementów. Dlatego przy wyborze nie należy gonić za maksymalnymi rozmiarami — należy obiektywnie ocenić wymiary obiektów, które mają zostać utworzone na drukarce, i opierać się na tych danych (plus niewielki zapas na wypadek sytuacji awaryjnej). Ponadto zwracamy uwagę, że duży wyrób można wydrukować w częściach, a następnie te części można połączyć.
Jeśli chodzi o konkretne wartości każdego rozmiaru, wszystkie trzy główne wymiary mają ten sam podział na umowne kategorie (rozmiar mały, średni, ponadprzeciętny oraz duży): — wysokość —
poniżej 150 mm,
151 - 200 mm,
201 - 250 mm,
więcej niż 250 mm ; — szerokość —
mniej niż 150 mm,
151 — 200 mm,
201 — 250 mm,
więcej niż 250 mm ; — głęboko
...ść — mniej niż 150 mm, 151 — 200 mm, 201 — 250 mm, więcej niż 250 mm.Objętość modelu
Największy nakład modelu jaki można wydrukować na drukarce. Wskaźnik ten zależy bezpośrednio od maksymalnych wymiarów (patrz wyżej) - z reguły odpowiada tym wymiarom pomnożonym przez siebie. Na przykład wymiary 230x240x270 mm będą odpowiadać objętości 23 * 24 * 27 = 14 904 cm3, czyli 14,9 litra.
Dokładne znaczenie tego wskaźnika zależy od zastosowanej technologii drukowania (patrz wyżej). Dane te mają fundamentalne znaczenie dla technologii fotopolimerowych SLA i DLP, a także dla proszkowego SHS: objętość modelu odpowiada ilości fotopolimeru/proszku, którą należy załadować do drukarki, aby wydrukować produkt na maksymalnej wysokości. Przy mniejszym rozmiarze ilość ta może się proporcjonalnie zmniejszyć (na przykład wydrukowanie modelu na połowie wysokości maksymalnej będzie wymagało połowy objętości), ale niektóre drukarki wymagają pełnego załadowania niezależnie od wielkości produktu. Z kolei dla FDM/FFF i innych podobnych technologii objętość modelu jest raczej wartością referencyjną: w nich rzeczywiste zużycie materiału będzie zależeć od konfiguracji drukowanego produktu.
Jeśli chodzi o konkretne liczby, objętość
do 5 litrów włącznie można uznać za małą,
od 5 do 10 litrów - średnią,
ponad 10 litrów - dużą.
Prędkość druku
Prędkość druku zapewniana przez drukarkę 3D typu FDM/FFF (patrz Technologia druku).
Szybkość drukowania w tym przypadku to maksymalna ilość materiału, która może przejść przez standardową dyszę na sekundę. Im wyższa wartość, tym szybciej drukarka jest w stanie obsłużyć dane zadanie. Oczywiście rzeczywisty czas produkcji będzie zależał od konfiguracji modelu i ustawionych parametrów druku, ale wszystkie inne rzeczy bez zmian, drukarka z większą prędkością i w praktyce będzie działać szybciej. Z drugiej strony, zwiększenie prędkości wymaga zwiększenia mocy grzewczej (aby wytłaczarka miała czas na stopienie wymaganej objętości materiału), mocy wydmuchu (w przeciwnym razie tworzywo sztuczne nie będzie miało czasu na normalne zestalenie), a także bardziej rygorystycznych kontrola ruchu ekstrudera (w celu skompensowania bezwładności przy szybkich ruchach). Ogólnie rzecz biorąc, parametr ten silnie zależy od półki cenowej i specjalizacji urządzenia, dlatego warto poszukać konkretnie „szybkiego” modelu w przypadkach, gdy szybkość produkcji ma dla Ciebie decydujące znaczenie.
Średnica dyszy
Średnica standardowej dyszy roboczej w drukarce pracującej na zasadzie FDM/FFF lub PJP (patrz „Technologia druku”).
To jeden z kluczowych parametrów decydujących o możliwościach drukarki. Szerokość poszczególnych linii w każdej warstwie oraz optymalna grubość samej warstwy są bezpośrednio związane ze średnicą dyszy. Tak więc przy małej dyszy te szerokość i grubość również będą małe, co poprawia szczegółowość, ale zmniejsza rzeczywistą prędkość drukowania (a także wytrzymałość gotowego produktu poprzez zwiększenie liczby połączeń). A duże dysze lepiej nadają się do zadań o dużej objętości, w których wydajność druku i niezawodność projektu są ważniejsze niż precyzja.
Bardziej szczegółowe zalecenia dotyczące doboru średnicy do konkretnego zadania i grubości warstwy można znaleźć w dedykowanych źródłach. Warto też wziąć pod uwagę, że wiele nowoczesnych drukarek 3D umożliwia wymianę dysz, a przy mniej lub bardziej poważnym drukowaniu 3D bezpośrednio wskazane jest posiadanie na stanie kilku wymiennych dysz. W rzeczywistości więc w niektórych modelach w zestawie znajduje się jednocześnie kilka dysz o różnych średnicach.
Transmisja danych
Metody przesyłania danych przewidziane w konstrukcji drukarki 3D. Mowa tu przede wszystkim o danych związanych z drukowanym modelem (zgodnie z którym drukarka bezpośrednio drukuje), w niektórych przypadkach także o konfiguracji urządzenia i innych sposobach interakcji z nim; szczegółowe informacje można znaleźć w poszczególnych pozycjach listy.
Jeśli chodzi o konkretne opcje, oprócz tradycyjnego
połączenia z PC przez USB, nowoczesne drukarki mogą zapewnić takie metody przesyłania danych jak
czytnik kart, prywatny
port USB, połączenie sieciowe przez
LAN, a także połączenie bezprzewodowe przez
Wi -Fi. Oto możliwości każdej z tych opcji:
- Czytnik kart. Natywne gniazdo kart pamięci w drukarce. Najczęściej przeznaczony do pracy z popularnymi kartami SD; jednak nawet takie nośniki mają kilka odmian, więc nie zaszkodzi sprawdzić osobno zakres obsługiwanych kart. W każdym razie głównym celem tej funkcji jest drukowanie bezpośrednie: wkładając do drukarki kartę z nagranym plikiem projektu można wykonać model nawet bez podłączania urządzenia do komputera. Można również przewidzieć inne sposoby wykorzystania czytnika kart - na przykład kopiowanie materiałów ze skanera modelowego na nośnik zewnętrzny (patrz "Funkcje i możliwości"). Zwróć uwagę, że funkcja ta jest wygodna głównie do wymiany danych z l
...aptopem - w prawie każdym nowoczesnym laptopie znajduje się gniazdo na karty pamięci.
- USB. Natywne złącze USB na korpusie drukarki. Wykorzystywany jest podobnie do opisanego powyżej czytnika kart - do pracy z nośnikami zewnętrznymi, w tym przypadku „pendrive” i innymi podobnymi urządzeniami. Sposoby korzystania z portu USB są również podobne - głównie drukowanie bezpośrednie, ale możliwe są również inne opcje (kopiowanie danych ze skanera, aktualizacja oprogramowania układowego itp.).
- Wi-Fi. Moduł bezprzewodowy, który można wykorzystać zarówno do podłączenia drukarki do sieci lokalnych, jak i do bezpośredniej komunikacji z tabletami, laptopami i innymi gadżetami. Konkretne możliwości należy wyjaśnić osobno, ale tutaj zauważamy, że połączenie sieciowe pozwala używać drukarki jako wspólnego urządzenia dla wszystkich komputerów w sieci lokalnej, a nawet uzyskiwać do niej dostęp z Internetu (chociaż ten ostatni może wymagać określonej konfiguracji). Jednocześnie Wi-Fi jest wygodniejszą alternatywą dla przewodowej sieci LAN (patrz poniżej), ponieważ eliminuje potrzebę okablowania. Jeśli chodzi o bezpośrednie połączenie z innym gadżetem, ta opcja jest mniej powszechna. Zwykle zapewnia możliwość wysyłania projektów do druku i dostęp do podstawowych ustawień; a korzystanie z tej kontrolki może wymagać zainstalowania specjalnej aplikacji.
- Połączenie z komputerem (USB). Podłączenie do portu USB komputera PC lub laptopa to najpopularniejszy sposób bezpośredniego podłączenia drukarki 3D do takich urządzeń. Zdecydowana większość nowoczesnych komputerów wyposażona jest w porty tego typu i nawet przestarzałe wtyczki USB 2.0 wystarczą do współpracy z drukarką, nie mówiąc już o nowszych standardach. Samo połączenie może służyć zarówno do wysyłania zadań drukowania, jak i do kontrolowania parametrów pracy – ponadto to właśnie za pośrednictwem komputera PC/laptopa zazwyczaj realizowane są szczegółowe ustawienia, które nie są dostępne na ekranie samej drukarki. Ponadto w razie potrzeby za pośrednictwem komputera można otworzyć ogólny dostęp do urządzenia za pośrednictwem sieci lokalnej lub Internetu - nawet jeśli sama drukarka nie posiada złącza LAN lub modułu Wi-Fi. Jest to znacznie bardziej skomplikowane w organizacji i nie tak wygodne niż korzystanie z modelu sieciowego z bezpośrednim połączeniem do sieci LAN, ale eliminuje konieczność przepłacania za dodatkowe opcje łączności w samej drukarce.
- Połączenie z komputerem (LAN). Połączenie z urządzeniami zewnętrznymi przez LAN - standardowe złącze do przewodowego połączenia z sieciami komputerowymi. Właściwie takie połączenie jest przeznaczone głównie do korzystania z drukarki jako urządzenia sieciowego - gdy dostęp do drukowania i ustawień można uzyskać z różnych komputerów w sieci lokalnej, a nawet przez Internet. LAN jest mniej wygodny do podłączenia niż Wi-Fi, ponieważ wymaga kabla, jednak takie połączenie jest bardziej niezawodne i nie cierpi na obecność dużej liczby urządzeń bezprzewodowych w pobliżu. Dodatkowo kabel może się przydać, jeśli router Wi-Fi lub punkt dostępu „nie dociera” do lokalizacji drukarki.
Zauważ, że standardowa aplikacja LAN zakłada połączenie z routerem sieciowym, ale możliwe jest również bezpośrednie połączenie z komputerem. Druga opcja pozwala na użycie tego złącza podobnie jak opisanego powyżej USB - czyli tylko dla jednego komputera; ale jeśli ten komputer jest podłączony do sieci lokalnej i / lub Internetu, możesz również skonfigurować dostęp sieciowy do drukarki.Wyświetlacz LCD
Drukarka posiada własny ekran. Konkretna funkcjonalność takiego ekranu może być różna — od najprostszego wskaźnika dla kilku znaków i symboli usług po pełnoprawną kolorową matrycę zdolną do wyświetlania napisów, rysunków itp.; te szczegóły należy wyjaśnić osobno. Jednak w każdym przypadku ta funkcja zapewnia dodatkową łatwość zarządzania: na ekranie można wyświetlać różne informacje serwisowe, które pomagają użytkownikowi skonfigurować parametry drukowania i kontrolować proces.
Warto podkreślić, że ekrany dotykowe nie są zaliczane do tej kategorii, są one wskazane jako osobna funkcja. Jednak rozmiar ekranu bezpośrednio wpływa na komfort pracy z urządzeniem.
Istnieją również modele z ekranem dotykowym, podobnym do tych stosowanych w smartfonach i tabletach. Taki wyświetlacz jest pełnowartościowym narzędziem sterującym, jest wygodniejszy i bardziej funkcjonalny niż bardziej tradycyjne opcje, takie jak panele z przyciskami: na ekranie można wyświetlać szeroką gamę elementów sterujących (przyciski, suwaki, listy itp.), wybierając optymalny zestaw tych elementów dla Twoich potrzeb w konkretnej sytuacji. Poza tym sam ekran ma zazwyczaj kolorową matrycę o dość dużej rozdzielczości, co pozwala na wyświetlanie szerokiej gamy danych serwisowych – nawet rysunków i diagramów. Dzięki temu większość funkcji sterujących drukarką można wykonać za pośrednictwem takiego wyświetlacza; niektóre modele z takim sprzętem są w stanie pracować nawet bez podłączenia do komputera. Wadą...ekranów dotykowych jest ich wyższy koszt w stosunku do konwencjonalnych, mimo że sterowanie za pomocą komputera jest zwykle nadal bardziej praktyczne i wizualne. Dlatego ta funkcja jest obecnie stosunkowo rzadka.