Zasada działania
-
odśrodkowe. Jak sama nazwa wskazuje, ten typ pompy wykorzystuje siłę odśrodkową. Ich głównym elementem jest wirnik zamontowany w okrągłej obudowie; wlot znajduje się na osi obrotu tego koła. Podczas pracy ciecz jest wyrzucana od środka do jej krawędzi pod wpływem siły odśrodkowej powstającej w wyniku obrotu koła, a następnie wchodzi do rury wylotowej skierowanej stycznie do okręgu obrotu koła. Pompy odśrodkowe są dość proste w konstrukcji i niedrogie, a jednocześnie niezawodne i ekonomiczne (ze względu na wysoką wydajność), mają dużą wysokość ssania (patrz poniżej), a przepływ płynu jest ciągły. Jednocześnie wydajność takich jednostek może znacznie spaść przy wysokiej rezystancji w obwodzie.
-
Wir. Pompy Vortex są nieco podobne do pomp odśrodkowych: mają również okrągłą obudowę i wirnik z łopatkami. Jednak w takich zespołach zarówno wlotowe, jak i wylotowe odgałęzienia komory roboczej są skierowane stycznie do koła, a łopatki różnią się konstrukcją. Zasadniczo inny jest też sposób pracy – zgodnie z nazwą wykorzystuje wiry powstałe na łopatkach koła. Agregaty Vortex znacznie przewyższają agregaty odśrodkowe pod względem ciśnienia, ale są wrażliwe na zanieczyszczenia – nawet drobne cząstki dostające się do wirnika mogą spowodować uszkodzenie, co znacznie obniża wydajność. A wydajność samych pomp wirowych jest niska - 2 - 3 razy niższa niż w przypadku pomp odśrodkowych.
Wydajność
Wydajność pompy to ilość cieczy, którą jest w stanie przepompować przez określony czas.
Cechy wyboru najlepszej opcji wydajności zależą przede wszystkim od przeznaczenia pompy (patrz wyżej). Na przykład w przypadku modeli recyrkulacyjnych dla CWU ogólna zasada jest taka, że wydajność pompy nie powinna przekraczać wydajności podgrzewacza wody. Na przykład, jeśli kocioł jest w stanie dostarczyć 10 litrów na minutę do obwodu CWU, maksymalna wydajność pompy wyniesie 10 * 60=600 l/h. Podstawowy wzór do obliczania wydajności instalacji grzewczej uwzględnia moc grzałki i różnicę temperatur na wlocie i wylocie, a dla instalacji wody zimnej liczbę punktów poboru. Bardziej szczegółowe informacje na temat obliczeń dla każdego obszaru aplikacji można znaleźć w dedykowanych źródłach, a same obliczenia lepiej powierzyć profesjonalistom - zmniejszy to prawdopodobieństwo przeoczenia znaczących niuansów.
Wysokość podnoszenia
Głowicę można opisać jako maksymalną wysokość, na jaką pompa jest w stanie podnieść ciecz w pionowej rurze bez załamań lub rozgałęzień. Parametr ten jest bezpośrednio związany z ciśnieniem, jakie zapewnia pompa: 10 m wysokości odpowiada w przybliżeniu ciśnieniu 1 bara (nie mylić tego wskaźnika z ciśnieniem roboczym - więcej na ten temat poniżej).
Głowica jest jednym z kluczowych wskaźników większości pomp obiegowych. Tradycyjnie oblicza się ją na podstawie różnicy wysokości między lokalizacją pompy a najwyższym punktem systemu; jednak zasada ta dotyczy tylko jednostek, które
zwiększają ciśnienie zimnej wody(patrz „Cel”). Modele cyrkulacyjne do ogrzewania i ciepłej wody użytkowej pracują z obiegami zamkniętymi, a dla nich optymalna wysokość podnoszenia zależy od całkowitego oporu hydraulicznego układu. Szczegółowe wzory obliczeniowe dla pierwszego i drugiego przypadku można znaleźć w dedykowanych źródłach.
Min. temperatura płynu
Najniższa temperatura płynu, przy której pompa może normalnie pracować.
Prawie wszystkie pompy, niezależnie od celu (patrz wyżej), są w stanie normalnie tolerować zimną wodę; dlatego w przypadku normalnego użytku domowego parametr ten nie jest krytyczny, a w przypadku niektórych modeli może w ogóle nie być wskazany. Ale jeśli potrzebujesz możliwości pracy z cieczami o temperaturze poniżej 15 °C, warto zwrócić szczególną uwagę na minimalną temperaturę. Niektóre modele, które można stosować z płynem niezamarzającym, mogą nawet tolerować temperatury poniżej zera; takie możliwości przydają się np. w przypadku budynków, które mogą „stać” w zimnych porach roku.
Maks. temperatura płynu
Najwyższa temperatura płynu, przy której pompa może normalnie pracować.
Możliwości wykorzystania urządzenia zależą bezpośrednio od tego wskaźnika (patrz „Przeznaczenie”): na przykład modele systemów grzewczych muszą wytrzymać temperatury co najmniej 95 °C, dla zaopatrzenia w ciepłą wodę - co najmniej 65 °C. Cóż, w każdym razie nie wolno przekraczać tego parametru: „przegrzana” pompa bardzo szybko ulegnie awarii, a konsekwencje tego mogą być bardzo nieprzyjemne.
Rodzaj silnika
Rodzaj silnika elektrycznego przewidzianego w konstrukcji pompy.
- Asynchroniczny. Silniki tego typu wyróżniają się prostą konstrukcją oraz niską ceną połączoną z niezawodnością. Ich główną wadą jest zależność prędkości obrotowej od obciążenia, co powoduje, że dla takiego silnika trudno jest dokładnie wyregulować tę częstotliwość. Jednocześnie dla użytku domowego moment ten jest zwykle bezkrytyczny, a w sferze zawodowej rzadko stwarza trudności. Dlatego silniki asynchroniczne są bardzo popularne we współczesnych pompach.
- Synchroniczny. Silniki synchroniczne wyróżniają się dużą dokładnością w regulacji prędkości - praktycznie nie zależy to od obciążenia wirnika; jest to ich główna przewaga nad asynchronicznymi. Z drugiej strony ten typ jest bardziej skomplikowany i droższy, a potrzeba precyzyjnej regulacji jest rzadka. Dlatego synchroniczne silniki elektryczne są instalowane głównie w pompach wysokiej jakości, przeznaczonych do pracy w określonych warunkach.
Materiał wału
Materiał, z którego wykonany jest wał silnika w pompie.
- Spiekany metal. Materiał łączący metale i ich stopy z komponentami niemetalicznymi. We współczesnych pompach można stosować różne rodzaje cermetali, różniące się ceną i jakością; z reguły cechy w każdym konkretnym przypadku zależą bezpośrednio od półki cenowej jednostki. Jednak ogólnie uważa się, że ta opcja dobrze nadaje się do modeli domowych o stosunkowo niskiej wydajności, ale słabo nadaje się do użytku profesjonalnego. Dlatego w pompach o wydajności ponad 15 000 litrów na godzinę wały cermetalowe praktycznie nie są używane.
- Stal nierdzewna. Materiał ten jest bardzo trwały i niezawodny, dzięki czemu znajduje się w prawie wszystkich kategoriach pomp - od stosunkowo prostych po profesjonalne, których wydajność liczona jest w dziesiątkach tysięcy litrów na godzinę. Co prawda kosztuje trochę więcej niż cermetal.
Przyłącze od strony wlotowej
Średnica przyłącza od strony wlotowej przewidziana w konstrukcji pompy. W przypadku gwintów hydraulicznych (patrz "Połączenie") średnica przyłącza jest tradycyjnie podawana w calach i ułamkach cala (
1/2",
3/4",
1",
1 1/4",
1 1/2" lub
2"), dla kołnierzy stosuje się oznaczenia według średnicy nominalnej (DN) otworu przelotowego w milimetrach (
DN 32,
DN 40,
DN 50,
DN 65,
DN 80, DN 100,
DN 125).
Parametr ten musi odpowiadać wymiarom mocowania na rurze, do której pompa ma być podłączona – w przeciwnym razie konieczne będzie użycie przejściówek, co jest mało wygodne, a czasami w ogóle nie jest zalecane.
Przyłącze od strony wylotowej
Wielkość wylotu przewidziana w konstrukcji pompy. Wartość tego parametru jest całkowicie zbliżona do wielkości wlotu (patrz wyżej).