Maks. wydajność
Maksymalna objętość wody, jaką urządzenie jest w stanie przepompować w określonym czasie; również parametr ten jest czasami nazywany przepustowością. Jest to jedna z kluczowych cech każdej pompy, ponieważ. charakteryzuje objętość wody, z jaką może pracować urządzenie. Jednocześnie nie zawsze ma sens dążenie do maksymalnej wydajności – w końcu wpływa to znacząco na gabaryty, wagę i „żarłoczność” urządzenia.
Istnieją formuły, które pozwalają uzyskać optymalne wartości wydajności dla różnych sytuacji. Tak więc, jeśli pompa jest przeznaczona do dostarczania wody do punktów poboru wody, jej minimalna wymagana wydajność nie powinna być niższa niż najwyższy całkowity przepływ; w razie potrzeby do tej wartości można dodać margines 20 - 30%. A w przypadku modeli kanalizacji (patrz „Miejsce docelowe”) wszystko będzie zależeć od objętości ścieków. Bardziej szczegółowe zalecenia dotyczące wyboru pompy w zależności od wydajności można znaleźć w specjalnych źródłach.
Wysokość podnoszenia
Maksymalna wysokość podnoszenia generowana przez pompę. Parametr ten jest najczęściej wskazywany w metrach, przez wysokość słupa wody, jaką urządzenie może wytworzyć - innymi słowy, przez wysokość, na którą jest w stanie dostarczyć wodę. Możesz oszacować ciśnienie wytwarzane przez pompę za pomocą prostego wzoru: każde 10 m słupa odpowiada ciśnieniu 1 bara.
Warto wybrać pompę według tego parametru, biorąc pod uwagę wysokość na jaką powinna dostarczać wodę, a także uwzględniając straty i zapotrzebowanie na ciśnienie w doprowadzeniu wody. Aby to zrobić, konieczne jest określenie różnicy wysokości między poziomem wody a najwyższym punktem poboru wody, dodaj do tej liczby kolejne 10 do 30 m (w zależności od ciśnienia, które należy uzyskać w systemie wodociągowym) i pomnóż wynik przez 1,1 - będzie to wymagane minimalne ciśnienie.
Przyłącze wylotowe / króciec
Rozmiar gwintu do podłączenia węża lub rury do wylotu pompy. Jeśli w konstrukcji występuje rura odgałęziona z gwintem zewnętrznym, wskazany jest dla niej rozmiar, jeśli nie, dla gwintu wewnętrznego wlotu.
W każdym razie wymiary wylotu pompy i mocowań na wężu/rurociągu podłączonym do niego muszą się zgadzać - w przeciwnym razie trzeba będzie szukać przejściówek. Te elementy złączne są tradycyjnie podawane w calach i ułamkach cala.
Parametr ten dotyczy przede wszystkim modeli powierzchni.
Przyłącze wlotowe / króciec
Wielkość gwintu przeznaczonego do podłączenia pompy do przewodu ssawnego. Parametr ten jest całkowicie podobny do wielkości wylotu (patrz wyżej) - w szczególności może być określony zarówno dla dyszy, jak i dla wlotu pompy.
Moc
Moc znamionowa silnika pompy. Im mocniejszy silnik, tym wyższa wydajność urządzenia, z reguły większe ciśnienie, wysokość ssania itp. Oczywiście parametry te w dużej mierze zależą od innych cech (przede wszystkim zasady działania, patrz wyżej); ale modele podobne w konstrukcji można porównywać w kategoriach ogólnych pod względem mocy.
Należy pamiętać, że duża moc z reguły zwiększa rozmiar, wagę i koszt pompy, a także wiąże się z wysokimi kosztami energii elektrycznej lub paliwa (patrz „Moc”). Dlatego warto wybrać pompę według tego wskaźnika, biorąc pod uwagę konkretną sytuację; bardziej szczegółowe zalecenia można znaleźć w specjalnych źródłach.
Materiał wirnika / rotora
Materiał, z którego wykonany jest główny element roboczy pompy to koło (wirnik), ślimak lub membrana. Ta część ma bezpośredni kontakt z pompowaną cieczą, dlatego jej właściwości są kluczowe dla ogólnej wydajności i możliwości pompy.
- Plastikowy. Plastik jest tani, poza tym nie podlega korozji. Uważa się, że wytrzymałość mechaniczna tego materiału jest na ogół niska i nie toleruje on kontaktu z zanieczyszczeniami stałymi. Jednak dzisiaj istnieje wiele odmian tworzyw sztucznych - w tym specjalne odmiany o wysokiej wytrzymałości, które nadają się nawet do pracy z silnie zanieczyszczoną wodą lub ściekami. Tak więc plastikowe wirniki / śruby można znaleźć w różnych typach pomp; ogólna jakość i niezawodność takich części z reguły zależy od kategorii cenowej urządzenia.
- Żeliwo. Solidny, trwały, niezawodny a przy tym stosunkowo niedrogi materiał. Pod względem odporności na korozję żeliwo jest teoretycznie gorsze od bardziej zaawansowanych stopów, takich jak stal nierdzewna lub aluminium; jednak, z zastrzeżeniem zasad eksploatacji, punkt ten nie jest krytyczny, a żywotność części żeliwnych jest nie mniejsza niż całkowity okres użytkowania pompy. Do jednoznacznych wad tej opcji należy zaliczyć dużą masę, która nieznacznie zwiększa zużycie energii/paliwa podczas pracy.
- Stal nierdzewna. Zgodnie z nazwą, jedną z kluczowych zalet „stali nierdzewnej” jest wysoka odporność na korozję – a co za tym idzie niezawodność i trwałość. Taki stop jest nieco droższy...niż żeliwo, ale też mniej waży.
— Aluminium. Stopy aluminium łączą w sobie wytrzymałość, niezawodność, odporność na korozję i niską wagę. Jednak takie materiały są dość drogie - droższe niż ta sama „stal nierdzewna”, nie wspominając o żeliwie.
- Mosiądz. Odmiany mosiądzu stosowane w pompach wyróżniają się dużą wytrzymałością i twardością oraz niewrażliwością na wilgoć. Takie materiały są dość drogie, ale ta cena jest w pełni uzasadniona wspomnianymi zaletami. Dlatego w niektórych typach pomp - w szczególności modelach powierzchniowych i przepompowniach - bardzo popularne są wirniki mosiężne.
— Brąz. Materiał podobny pod wieloma właściwościami do mosiądzu opisanego powyżej. Jednak brąz jest używany znacznie rzadziej – w szczególności ze względu na nieco wyższy koszt.
— Stal. Odmiany stali, które nie są związane ze stalą nierdzewną, są stosowane niezwykle rzadko - w niektórych modelach pomp do cieczy chemicznych. Jednocześnie jako podstawę takich części zwykle stosuje się stal, a w celu ochrony przed korozją nakłada się na nią powłokę z fluoroplastu lub innego podobnego materiału.
— silumin. Silumin to stopy aluminium z dodatkiem krzemu. Z wielu powodów takie materiały są rzadkością w pompach, a głównie wśród stosunkowo niedrogich modeli.
- Guma. Materiał tradycyjnie stosowany na membrany w pompach wibracyjnych (patrz „Zasada działania”).