Przeznaczenie
- Czysta woda. Pompy przeznaczone do czystej wody konwencjonalnie obejmują wszystkie modele, dla których maksymalna wielkość cząstek (patrz poniżej) nie przekracza 5 mm; ponadto dopuszczalna zawartość zanieczyszczeń mechanicznych (patrz również niżej) jest dla nich również niewielka. W związku z tym wiele z tych modeli jest w stanie normalnie pompować wodę z zanieczyszczeniami, ale nie nadają się do silnie zanieczyszczonych cieczy.
- Brudna woda. Ta kategoria obejmuje pompy zdolne do przenoszenia dużych zanieczyszczeń mechanicznych - powyżej 5 mm. Należy pamiętać, że niektórzy producenci pozycjonują takie modele jako jednostki mieszanego użytku, „do brudnej i czystej wody”, ale w każdym razie charakteryzują się wzmocnioną konstrukcją, młynkiem zdolnym do mielenia wspomnianych cząstek, wzmocnionym korpusem, zwiększoną średnicą dysz, zwiększona moc itp. .P. Główną różnicą między takimi pompami a pompami do ścieków (patrz wyżej) jest niemożność pracy z cieczami o wysokiej lepkości.
- Kanalizacja. Pompy do ścieków (fekalnych) są bardzo podobne do opisanych powyżej modeli do brudnej wody, ponieważ mają też do czynienia z dużymi cząsteczkami. Główną różnicą jest dopuszczalna wielkość tych cząstek - wynosi 50 mm lub więcej; ponadto cała konstrukcja takich pomp jest tworzona w oparciu o wysoką lepkość pompowanej cieczy.
- Płyny chemiczne. Pompy przeznaczone do pracy z płynami chemicznymi wyróżnia przede wszystkim zastosowanie w konstrukcji szczególnie wy...trzymałych materiałów – z reguły polimerów. Dzięki temu są w stanie tolerować pracę z agresywnymi substancjami - kwasami, zasadami, produktami naftowymi, rozpuszczalnikami, skroplonymi gazami itp. Bez konsekwencji. Ponadto w pompach „chemicznych” często stosowane są inne specjalne rozwiązania, które pozwalają na bezpieczne pompowanie materiałów palnych i wybuchowych, bardzo zimnych, gorących, lepkich cieczy itp. Głównym obszarem zastosowania takich jednostek jest przemysł – zarówno chemiczny jak i naftowy, spożywczy itp. Należy pamiętać, że dla różnych rodzajów substancji można zaprojektować różne modele.
Maks. wydajność
Maksymalna objętość wody, jaką urządzenie jest w stanie przepompować w określonym czasie; również parametr ten jest czasami nazywany przepustowością. Jest to jedna z kluczowych cech każdej pompy, ponieważ. charakteryzuje objętość wody, z jaką może pracować urządzenie. Jednocześnie nie zawsze ma sens dążenie do maksymalnej wydajności – w końcu wpływa to znacząco na gabaryty, wagę i „żarłoczność” urządzenia.
Istnieją formuły, które pozwalają uzyskać optymalne wartości wydajności dla różnych sytuacji. Tak więc, jeśli pompa jest przeznaczona do dostarczania wody do punktów poboru wody, jej minimalna wymagana wydajność nie powinna być niższa niż najwyższy całkowity przepływ; w razie potrzeby do tej wartości można dodać margines 20 - 30%. A w przypadku modeli kanalizacji (patrz „Miejsce docelowe”) wszystko będzie zależeć od objętości ścieków. Bardziej szczegółowe zalecenia dotyczące wyboru pompy w zależności od wydajności można znaleźć w specjalnych źródłach.
Maks. głębokość zanurzenia
Największa głębokość, na której można umieścić pompę głębinową bez ryzyka awarii lub awarii. Zazwyczaj jest to wskazane dla wody słodkiej, dlatego w praktyce nie zaleca się opuszczania pompy do maksymalnego poziomu głębokości - w końcu gęstość pompowanej cieczy może być większa, co spowoduje powstanie obciążeń pozaprojektowych na konstrukcji.
Maksymalny rozmiar cząstek
Największy rozmiar cząstek stałych, z którymi pompa może bez problemu poradzić sobie. Ten rozmiar jest głównym wskaźnikiem, który określa przeznaczenie urządzenia (patrz wyżej); ogólnie rzecz biorąc, im jest ono większe, tym bardziej niezawodne jest urządzenie, tym mniejsze ryzyko uszkodzenia w przypadku dostania się ciała obcego do przewodu ssącego. Jeżeli ryzyko pojawienia się zbyt dużych zanieczyszczeń mechanicznych jest nadal duże, można zapewnić dodatkową ochronę za pomocą filtrów lub siatek na wlocie. Taki środek należy jednak traktować jedynie jako ochronę w nagłych wypadkach, ponieważ od stałego wpływu cząstek stałych siatki są zatkane i odkształcone, co może prowadzić zarówno do zablokowania linii, jak i przebicia filtra.
Wyłącznik pływakowy
Obecność łącznika pływakowego w konstrukcji urządzenia.
Działanie takiego przełącznika opiera się na czujniku w postaci pływaka, który określa poziom pompowanej cieczy. Jednocześnie taki czujnik może jednocześnie pełnić kilka funkcji. Głównym z nich jest ochrona pompy przed suchobiegiem: gdy poziom cieczy spadnie krytycznie, czujnik wyłącza pompę, zapobiegając przedostawaniu się powietrza do linii i pomagając oszczędzać energię. Dodatkowo pływak może być wykorzystany jako czujnik przelewu (ostrzegający o krytycznym wzroście poziomu cieczy), a w niektórych modelach również jako czujnik poziomu ogólnego (raportujący rzeczywistą ilość cieczy).
Moc
Moc znamionowa silnika pompy. Im mocniejszy silnik, tym wyższa wydajność urządzenia, z reguły większe ciśnienie, wysokość ssania itp. Oczywiście parametry te w dużej mierze zależą od innych cech (przede wszystkim zasady działania, patrz wyżej); ale modele podobne w konstrukcji można porównywać w kategoriach ogólnych pod względem mocy.
Należy pamiętać, że duża moc z reguły zwiększa rozmiar, wagę i koszt pompy, a także wiąże się z wysokimi kosztami energii elektrycznej lub paliwa (patrz „Moc”). Dlatego warto wybrać pompę według tego wskaźnika, biorąc pod uwagę konkretną sytuację; bardziej szczegółowe zalecenia można znaleźć w specjalnych źródłach.
Długość kabla zasilającego
Długość kabla zasilającego pompę prądem o odpowiednim typie zasilania (patrz wyżej). Im dłuższy kabel, tym dalej od gniazdka lub innego źródła zasilania można zainstalować pompę. Parametr ten jest szczególnie ważny w przypadku modeli podwodnych: jeśli kabel jest zbyt krótki, po prostu niemożliwe będzie obniżenie pompy na maksymalną głębokość przewidzianą w jej konstrukcji, ponieważ zwykłych przedłużaczy nie można zanurzyć w wodzie.
Materiał wirnika / rotora
Materiał, z którego wykonany jest główny element roboczy pompy to koło (wirnik), ślimak lub membrana. Ta część ma bezpośredni kontakt z pompowaną cieczą, dlatego jej właściwości są kluczowe dla ogólnej wydajności i możliwości pompy.
- Plastikowy. Plastik jest tani, poza tym nie podlega korozji. Uważa się, że wytrzymałość mechaniczna tego materiału jest na ogół niska i nie toleruje on kontaktu z zanieczyszczeniami stałymi. Jednak dzisiaj istnieje wiele odmian tworzyw sztucznych - w tym specjalne odmiany o wysokiej wytrzymałości, które nadają się nawet do pracy z silnie zanieczyszczoną wodą lub ściekami. Tak więc plastikowe wirniki / śruby można znaleźć w różnych typach pomp; ogólna jakość i niezawodność takich części z reguły zależy od kategorii cenowej urządzenia.
- Żeliwo. Solidny, trwały, niezawodny a przy tym stosunkowo niedrogi materiał. Pod względem odporności na korozję żeliwo jest teoretycznie gorsze od bardziej zaawansowanych stopów, takich jak stal nierdzewna lub aluminium; jednak, z zastrzeżeniem zasad eksploatacji, punkt ten nie jest krytyczny, a żywotność części żeliwnych jest nie mniejsza niż całkowity okres użytkowania pompy. Do jednoznacznych wad tej opcji należy zaliczyć dużą masę, która nieznacznie zwiększa zużycie energii/paliwa podczas pracy.
- Stal nierdzewna. Zgodnie z nazwą, jedną z kluczowych zalet „stali nierdzewnej” jest wysoka odporność na korozję – a co za tym idzie niezawodność i trwałość. Taki stop jest nieco droższy...niż żeliwo, ale też mniej waży.
— Aluminium. Stopy aluminium łączą w sobie wytrzymałość, niezawodność, odporność na korozję i niską wagę. Jednak takie materiały są dość drogie - droższe niż ta sama „stal nierdzewna”, nie wspominając o żeliwie.
- Mosiądz. Odmiany mosiądzu stosowane w pompach wyróżniają się dużą wytrzymałością i twardością oraz niewrażliwością na wilgoć. Takie materiały są dość drogie, ale ta cena jest w pełni uzasadniona wspomnianymi zaletami. Dlatego w niektórych typach pomp - w szczególności modelach powierzchniowych i przepompowniach - bardzo popularne są wirniki mosiężne.
— Brąz. Materiał podobny pod wieloma właściwościami do mosiądzu opisanego powyżej. Jednak brąz jest używany znacznie rzadziej – w szczególności ze względu na nieco wyższy koszt.
— Stal. Odmiany stali, które nie są związane ze stalą nierdzewną, są stosowane niezwykle rzadko - w niektórych modelach pomp do cieczy chemicznych. Jednocześnie jako podstawę takich części zwykle stosuje się stal, a w celu ochrony przed korozją nakłada się na nią powłokę z fluoroplastu lub innego podobnego materiału.
— silumin. Silumin to stopy aluminium z dodatkiem krzemu. Z wielu powodów takie materiały są rzadkością w pompach, a głównie wśród stosunkowo niedrogich modeli.
- Guma. Materiał tradycyjnie stosowany na membrany w pompach wibracyjnych (patrz „Zasada działania”).