Polska
Katalog   /   Dom i remont   /   Zasilanie awaryjne   /   Agregaty prądotwórcze

Porównanie Kraftech KT 6500 W vs Forte FGD 6500EW

Dodaj do porównania
Kraftech KT 6500 W
Forte FGD 6500EW
Kraftech KT 6500 WForte FGD 6500EW
od 928 zł
Produkt jest niedostępny
od 4 383 zł
Produkt jest niedostępny
TOP sprzedawcy
Paliwobenzynadiesel
Napięcie wyjściowe230 i 400 V230 B
Moc znamionowa2 kW2 kW
Moc maksymalna2.2 kW2.5 kW
Alternator (prądnica)synchroniczny
Uzwojenie alternatora (prądnicy)miedziane
Agregat spawalniczy
Rodzaj prądu spawaniastały (DC)
Maks. prąd spawania180 А
Maks. średnica elektrody4 mm
Silnik
Rodzaj silnika spalinowego4-suwowy4-suwowy
Model silnika168F
Pojemność silnika196 cm³389 cm³
Moc6.5 KM13 KM
Rodzaj rozruchuręcznyelektryczny
Zużycie paliwa (obciążenie 50%)1.3 l/h3 l/h
Pojemność zbiornika paliwa15 l15 l
Wskaźnik poziomu paliwa
Chłodzenie silnikapowietrzepowietrze
Podłączenie (gniazda)
Łączna liczba gniazd4 szt.2 szt.
Gniazda 230 V2 szt. na 16 A
Funkcje i możliwości
Funkcje
 
woltomierz
automatyczny regulator napięcia (AVR)
woltomierz
Dane ogólne
Koła
Poziom ochronyIP 23
Poziom hałasu
68 dB /w odległości 7 m/
75 dB
Wymiary650x450x450 mm760x550x650 mm
Waga38 kg108 kg
Data dodania do E-Katalogmarzec 2017wrzesień 2011

Paliwo

Rodzaj paliwa, na którym pracuje silnik generatora prądu.

Benzyna. Jeden z głównych rodzajów paliw do silników spalinowych. Generatory benzynowe są zwykle tańsze niż generatory z silnikiem Diesel, przy pozostałych warunkach równych, ale są droższe w eksploatacji ze względu na wyższą cenę benzyny; ponadto mają zwykle krótszą żywotność niż z silnikiem Diesel. Dlatego uważa się, że generatory benzynowe dobrze nadają się przede wszystkim jako zapasowe źródło zasilania w przypadku przerw w dostawie prądu.

Diesel. Generatory z silnikiem Diesel są zwykle droższe niż generatory benzynowe; z drugiej strony olej napędowy jest tańszy niż benzyna, więc zwiększony koszt może się zwrócić przy regularnym użytkowaniu. Ponadto generatory dieslowskie mają dłuższą żywotność i większy zakres mocy niż generatory benzynowe. Dzięki temu mogą być używane zarówno jako zapasowe, jak i główne źródła zasilania, w tym w obiektach dość „energochłonnych”.

Gaz. Zaletami generatorów gazowych jest ich stosunkowo niski poziom hałasu oraz niewielka ilość szkodliwych emisji. Stosowanie gazu jako paliwa wiąże się z pewnymi trudnościami: konieczne jest podłączenie do sieci gazowej lub regularna wymiana specjalnych butli, układ paliwowy jest szczególnie wrażliwy na wycieki itp. Dlatego produkuje się stosunkowo niewiele takich modeli, a większość z nich to stacjonarne generatory o...dużej mocy, w których wspomniane wady są kompensowane zaletami.

Benzyna/gaz. Modele zdolne do korzystania z obu tych paliw. Daje to użytkownikowi możliwość wyboru opcji, która najlepiej pasuje do konkretnej sytuacji, a także zmniejsza prawdopodobieństwo pozostawienia bez paliwa w najbardziej nieodpowiednim momencie; przy tym podobne modele są droższe od jednopaliwowych. Parametry techniczne benzyny i gazu zostały szczegółowo opisane powyżej.

Napięcie wyjściowe

Napięcie znamionowe na wyjściu generatora.

230 V (1 faza). Standardowe napięcie zwykłego gniazdka domowego. Jest szeroko stosowane w życiu codziennym, a wśród specjalistycznego sprzętu znajduje się wiele urządzeń o napięciu 230 V; jedynym wyjątkiem jest potężny sprzęt (głównie od 4 – 5 kW), dla którego to napięcie już nie wystarcza. To na generatory o napięciu 230 V należy zwrócić uwagę w szczególności tym, którzy szukają urządzenia do awaryjnego zasilania mieszkania lub małego biura.

400 V (3 fazy). Generatory zdolne do dostarczania prądu trójfazowego o napięciu 400 V są niezwykle rzadkie w domu, ale mogą być wymagane w przypadku ciężkiego sprzętu i innych podobnych obciążeń. Generatory o napięciu 400 V są na ogół mocniejsze, cięższe, droższe i „bardziej żarłoczne” niż generatory o napięciu 230 V. Większość z nich wyposażona jest nie tylko w gniazda trójfazowe, ale także jednofazowe; jednak warto szukać konkretnie takiego agregatu tylko wtedy, gdy niezbędna jest obecność zasilania trójfazowego.

Moc maksymalna

Maksymalna moc, jaką może dostarczyć generator.

Ta moc jest nieco wyższa niż znamionowa (patrz wyżej), jednak tryb maksymalnej wydajności może być utrzymany tylko przez bardzo krótki czas — w przeciwnym razie wystąpi przeciążenie. Dlatego praktycznym znaczeniem tej cechy jest głównie opisanie sprawności generatora podczas pracy ze zwiększonymi prądami rozruchowymi.

Przypomnijmy, że niektóre rodzaje urządzeń elektrycznych w momencie rozruchu zużywają kilkakrotnie więcej prądu (i odpowiednio mocy) niż w trybie normalnym; jest to typowe głównie dla urządzeń z silnikami elektrycznymi, takich jak elektronarzędzia, lodówki itp. Jednak zwiększona moc do takiego sprzętu jest potrzebna tylko na krótki czas, normalna praca przywracana jest w ciągu kilku sekund. Możesz oszacować charakterystykę rozruchową, mnożąc moc znamionową przez tak zwany współczynnik rozruchu. W przypadku sprzętu jednego typu jest mniej więcej taki sam (1,2 — 1,3 dla większości elektronarzędzi, 2 dla kuchenki mikrofalowej, 3,5 dla klimatyzatora itp.); bardziej szczegółowe dane dostępne są w dedykowanych źródłach.

W warunkach idealnych maksymalna moc generatora nie powinna być niższa niż całkowita moc szczytowa podłączonego obciążenia — to znaczy moc rozruchowa sprzętu o współczynniku rozruchu większym niż 1 plus moc znamionowa wszystkich innych urządzeń. Zminimalizuje to prawdopodobieństwo przeciążenia.

Alternator (prądnica)

Rodzaj alternatora (prądnicy) zainstalowanego w agregacie.

Alternator jest częścią generatora, która jest bezpośrednio odpowiedzialna za wytwarzanie energii elektrycznej. Taki system działa na zasadzie ruchu przewodów (cewek) w polu magnetycznym, dzięki czemu generowany jest prąd elektryczny. Jednak cechy alternatora mogą być różne, na podstawie których dzieli się je na typy: asynchroniczne, synchroniczne, inwerterowe i Duplex. Oto główne cechy każdej opcji:

— Asynchroniczny. Najprostsza wersja alternatora. Wirnik (część obrotowa) w takich modelach, gdy się obraca, nieco wyprzedza ruch pola magnetycznego wytwarzanego przez stojan (część nieruchomą) — stąd nazwa. Praktyczne zalety alternatorów asynchronicznych to prostota, niski koszt, dobra ochrona przed wpływami zewnętrznymi oraz niewrażliwość na zwarcia i długotrwałe przeciążenia. Ta ostatnia cecha czyni je optymalnym wyborem do zasilania spawarek. Ogólnie rzecz biorąc, generatory asynchroniczne są przeznaczone głównie do obciążeń aktywnych: urządzeń oświetleniowych, komputerów, grzałek elektrycznych itp. W przypadku obciążeń biernych (z cewkami i kondensatorami) lepiej jest stosować urządzenia synchroniczne (patrz poniżej). Warto również zauważyć, że w alternatorze asynchronicznym napięcie i częstotliwość prądu wyjściowego zależą bezpośrednio od prędkości obrotowej; dla...tego takie urządzenia są szczególnie wymagające pod względem stabilności silnika napędowego.

— Synchroniczny. W tego typu alternatorach obroty wirnika i pola magnetycznego stojana się pokrywają (w przeciwieństwie do modeli asynchronicznych). Generatory synchroniczne są nieco bardziej złożone w konstrukcji i droższe, są bardziej wrażliwe na zwarcia i długotrwałe przeciążenia. Z drugiej strony takie urządzenie doskonale radzi sobie zarówno z obciążeniami czynnymi, jak i biernymi: przez krótki czas jest w stanie dostarczyć prąd wielokrotnie wyższy niż znamionowy, zapewniając tym samym niezbędny prąd rozruchowy dla obciążenia biernego. Ponadto konstrukcja generatorów synchronicznych obejmuje automatyczny regulator, który wytwarza stabilne napięcie i jest w stanie w pewnym stopniu skompensować wahania prędkości silnika napędowego. Jednak pod względem stabilności napięcia modele synchroniczne są nadal gorsze od modeli inwerterowych (patrz poniżej).

— Inwerterowy. Generator synchroniczny (patrz wyżej), wyposażony w dodatkową jednostkę elektroniczną — falownik. Jednostka ta zapewnia podwójną konwersję prądu: z AC na DC i z powrotem na AC. Takie urządzenia nie są tanie, ale jednocześnie mają szereg zalet. Po pierwsze, na wyjściu uzyskuje się bardzo stabilny prąd, praktycznie bez przepięć i wahań. Po drugie, generator jest w stanie regulować pracę silnika w zależności od obciążenia: na przykład, jeśli obciążenie wynosi połowę mocy wyjściowej, aktualna moc silnika zmniejsza się o połowę; skutkuje to znaczną oszczędnością paliwa. Po trzecie, modele inwerterowe są lżejsze i bardziej kompaktowe niż tradycyjne generatory i są mniej hałaśliwe. Jest to taki generator, który jest uważany za najlepszy wybór dla obciążenia wrażliwego na jakość prądu, takiego jak sprzęt audio czy telewizor. Jednocześnie urządzenia tego typu charakteryzują się stosunkowo małą mocą i nie są przeznaczone do długotrwałej pracy ani dużych obciążeń rozruchowych, w związku z czym są wykorzystywane jedynie jako rezerwowe źródła zasilania dla układów o stosunkowo małej mocy. Ponadto przy wyborze generatora inwerterowego warto doprecyzować kształt przebiegu sinusoidy: nie wszystkie modele dają idealną sinusoidę – są też agregaty z impulsem trapezowym, które nie nadają się do delikatnych urządzeń.

— Duplex. Rodzaj alternatorów opracowany przez firmę Endress i stosowany głównie w generatorach tej marki (choć są też urządzenia innych producentów). Według twórców taki alternator łączy w sobie zalety modeli synchronicznych i asynchronicznych. Tak więc, z jednej strony, jest w stanie wytrzymać wysokie prądy rozruchowe bez uszczerbku dla zasilania innych odbiorców, a konstrukcja zwykle ma automatyczny regulator napięcia wyjściowego; z drugiej strony — większość z tych generatorów może być również wykorzystywana do zasilania spawarek, a liczba harmonicznych o wysokiej częstotliwości na wyjściu jest bardzo niska. Wady „dupleksów”, oprócz wysokich kosztów, obejmują konieczność konfiguracji pod konkretny zestaw podłączonych urządzeń.

Uzwojenie alternatora (prądnicy)

Miedziane. Uzwojenie miedziane jest typowe dla zaawansowanych generatorów. Miedziany alternator charakteryzuje się wysoką przewodnością i niską rezystancją. Przewodność miedzi jest 1,7 razy większa niż przewodność aluminium, takie uzwojenie mniej się nagrzewa, a połączenia z tego metalu mogą wytrzymać spadki temperatury i obciążenia wibracyjne. Wśród wad miedzianego uzwojenia można tylko zauważyć wysoki koszt alternatora. Poza tym generatory z uzwojeniem miedzianym charakteryzują się wysoką niezawodnością i trwałością.

— Aluminiowe. Aluminiowe uzwojenie alternatora jest typowe dla niedrogich generatorów. Główne zalety aluminium to niewielka waga i niska cena, poza tym takie uzwojenie z reguły jest gorsze od analogów miedzianych. Na powierzchni aluminium tworzy się warstwa tlenkowa, która pojawia się wszędzie, nawet w miejscach lutowania stykowego. Warstwa tlenkowa zacieśnia styki i zapobiega pewnemu utrzymywaniu aluminiowych przewodów przez zewnętrzny oplot ochronny.

Rodzaj prądu spawania

Rodzaj prądu wytwarzanego przez generator spawalniczy do elektrod podczas spawania.

— Przemienny (AC). Prąd o stale zmieniającej się biegunowości — jak w zwykłych domowych gniazdkach; jednak do spawania zwykle stosuje się wyższe częstotliwości — nie 50 — 60 Hz, ale rzędu kilkudziesięciu kiloherców. Kluczową zaletą prądu przemiennego jest to, że nie ma on stałej biegunowości — innymi słowy, przy podłączaniu elektrod w zasadzie nie można pomylić biegunowości dodatniej i ujemnej. Z drugiej strony ciągłe odwracanie kierunku prądu zwiększa ilość odprysków i obniża jakość spoiny w porównaniu z zastosowaniem prądu stałego. W konsekwencji ta opcja jest stosunkowo rzadka i przeznaczona do stosunkowo ciężkiej pracy.

— Stały (DC). Prąd, który ma stałą biegunowość i stale płynie w jednym kierunku, nie zmieniając go. Pozwala to na uzyskanie ciaśniejszej spoiny z mniejszą ilością odprysków niż podczas spawania prądem przemiennym; w konsekwencji to właśnie prąd stały jest wykorzystywany przez większość współczesnych generatorów spawalniczych. Jednocześnie podczas pracy z takim urządzeniem należy uważnie monitorować biegunowość połączenia — i, w zależności od cech pracy, może być potrzebna zarówno biegunowość „bezpośrednia” (ujemna na elektrodzie), jak i „odwrotna" (ujemna na materiałe). Ponadto dla prądu stałego wymagane są dodatkowe obwody, co nieznacznie zwiększa koszt generatorów.

Maks. prąd spawania

Maksymalny prąd, jaki generator spawalniczy (patrz wyżej) jest w stanie dostarczyć do elektrod podczas spawania.

W przypadku różnych materiałów, różnych grubości spawanych części i różnych rodzajów samego spawania, optymalny prąd spawania również będzie różny; istnieją specjalne tabele do określenia tej wartości. Ogólna zasada jest taka: maksymalny prąd generatora nie może być niższy niż wymagany prąd spawania, w przeciwnym razie urządzenie albo będzie pracować z przeciążeniem, albo nie będzie w stanie zapewnić wymaganej wydajności spawania.

Maks. średnica elektrody

Maksymalna średnica elektrod spawalniczych, jaką może obsłużyć generator spawalniczy (patrz wyżej).

Im grubszy obrabiany materiał i szersza spoina, tym grubsze elektrody muszą być użyte do spawania; a grubsza elektroda z reguły zakłada użycie wyższych prądów. Istnieją specjalne tabele, które pozwalają określić optymalną średnicę elektrody w zależności od rodzaju i grubości materiału, rodzaju spawania itp. Jednak w żadnym przypadku grubość zastosowanej elektrody nie powinna być wyższa niż maksymalna dopuszczalna — jest to obarczone przeciążeniami i awariami, a w najlepszym razie generator po prostu nie będzie w stanie zapewnić wymaganej wydajności.

Model silnika

Nazwa modelu silnika zainstalowanego w generatorze. Znając tę nazwę, możesz w razie potrzeby znaleźć szczegółowe dane dotyczące silnika i wyjaśnić, w jaki sposób spełnia on Twoje wymagania. Ponadto dane modelu mogą być potrzebne do niektórych określonych zadań, w tym konserwacji i napraw.

Należy pamiętać, że współczesne generatory są często wyposażone w markowe silniki renomowanych producentów: Honda, John Deere, Mitsubishi, Volvo itp. Takie silniki są droższe niż podobne urządzenia mało znanych marek, ale rekompensuje to wyższa jakość i/lub solidność warunków gwarancji, a w wielu przypadkach także łatwość odnalezienia części zamiennych i dodatkowej dokumentacji (takiej jak instrukcje obsługi specjalnej i drobnych napraw).