Powierzchnia grzewcza
Maksymalna powierzchnia pomieszczenia, którą kocioł może wydajnie ogrzać. Warto jednak wziąć pod uwagę, że różne budynki mają różne właściwości termoizolacyjne, a nowoczesne budynki są znacznie „cieplejsze” niż domy 30-letnie, a tym bardziej 50-letnie. W związku z tym, punkt ten ma raczej charakter referencyjny i nie pozwala na pełną ocenę rzeczywistego ogrzewanego obszaru. Istnieje wzór, za pomocą którego można wywnioskować maksymalną powierzchnię grzewczą, znając moc użyteczną kotła i warunki klimatyczne, w których będzie on używany; zobacz "Moc użyteczna", aby uzyskać szczegółowe informacje. W naszym przypadku powierzchnia grzewcza liczona jest według wzoru „moc kotła pomnożona przez 8”, co w przybliżeniu jest równoznaczne wykorzystaniu w kilkunastoletnich domach.
Pobór mocy
Maksymalna moc elektryczna pobierana przez kocioł podczas pracy. W przypadku modeli nieelektrycznych (patrz „Źródło zasilania”) moc ta jest zwykle niska, jest ona potrzebna głównie dla obwodów sterujących i nie można na nią zwracać szczególnej uwagi. W przypadku kotłów elektrycznych warto zauważyć, że pobór mocy w nich jest najczęściej nieco wyższy od mocy użytecznej, ponieważ część energii jest nieuchronnie rozpraszana i nie jest wykorzystywana do ogrzewania. W związku z tym, zgodnie ze stosunkiem mocy użytecznej do zużytej, można oszacować sprawność takiego kotła.
Czujnik temperatury zewnętrznej
Czujnik temperatury zewnętrznej pozwala na monitorowanie zewnętrznych warunków pogodowych i automatyczne dostosowywanie do nich pracy kotła - w celu zwiększenia mocy grzewczej, gdy temperatura zewnętrzna spada i obniżenia, gdy wzrasta.
Protokół komunikacyjny
Magistrala komunikacyjna, z którą kocioł jest kompatybilny.
Magistrala jest kanałem komunikacyjnym, za pośrednictwem którego urządzenia sterujące i sterowane mogą wymieniać dane. Obsługa takiego kanału znacznie upraszcza podłączenie termostatów i innej automatyki sterującej - wystarczy, że takie urządzenia są kompatybilne z tą samą magistralą co kocioł. Ponadto wiele rodzajów magistrali komunikacyjnych pozwala tworzyć bardzo rozbudowane systemy monitoringu i sterowania oraz łatwo integrować w nie różne urządzenia, w tym kotły grzewcze.
W nowoczesnym sprzęcie grzewczym najpopularniejsze magistrale to
OpenTherm,
eBus,
Bus BridgeNet i
EMS. Oto ich kluczowe cechy:
- OpenTherm. Dość prosty standard o skromnej funkcjonalności: pozwala tylko na bezpośrednie połączenie sterującego i sterowanego urządzenia, nie jest przeznaczony do tworzenia rozbudowanych systemów. Z drugiej strony, taka magistrala ma dość zaawansowane możliwości sterowania urządzeniami grzewczymi: w szczególności pozwala regulować temperaturę nie tylko poprzez włączanie/wyłączanie kotła, lecz także poprzez zmianę mocy palnika gazowego. Ten tryb pracy pomaga oszczędzać paliwo/energię, a także zmniejszać zużycie i wydłużać żywotność nagrzewnicy; a w wielu przypadkach do sprawnego sterowania ogrzewaniem wystarcza system dwóch urządzeń (kotła i termostat
...u). Jednocześnie standard OpenTherm jest prosty i tani w realizacji, co czyni go niezwykle popularnym w nowoczesnych kotłach. Z wielu powodów stosuje się go głównie w modelach gazowych.
- e-Bus. Magistrala komunikacyjna o imponujących możliwościach praktycznych. Pozwala na zjednoczenie w jednym systemie do 25 urządzeń sterujących i 228 sterowanych, z odległością transmisji danych pomiędzy poszczególnymi elementami do 1 km. Jednocześnie eBUS jest standardem otwartym, jego wdrożenie (przynajmniej w zakresie podstawowych funkcji) jest dostępne bezpłatnie dla każdego. I choć obecnie obsługę eBUS można spotkać głównie w urządzeniach Protherm i Vaillant, to generalnie w kotłach jest to drugi, po OpenTherm, najpopularniejszy typ magistrali komunikacyjnej. Takie odstawanie wynika głównie z nieco wyższego kosztu, podczas gdy zaawansowane możliwości eBUS nie są tak często potrzebne.
- Bus BridgeNet. Autorskie opracowanie Hotpoint-Ariston, stosowane wyłącznie w kotłach tej marki. Jedną z zalet jest wysoki stopień automatyzacji: użytkownik musi tylko ustawić parametry temperatury (a dla różnych stref można wybrać własne opcje) oraz, w razie potrzeby, program na tydzień, resztę niezbędnych obliczeń i korekty zostaną przeprowadzone przez system. Jednak takie możliwości są dostępne tylko w specjalnych urządzeniach sterujących, takich jak termostaty; w kotłach, obsługa Bus BridgeNet oznacza zazwyczaj tylko kompatybilność z podobną automatyką.
- EMS. Magistrala komunikacyjna stosowana głównie w urządzeniach Bosch i Buderus. Generalnie cechuje się szeroką funkcjonalnością, wysokim stopniem automatyzacji oraz możliwością tworzenia rozbudowanych systemów sterowania. Należy jednak pamiętać, że w dzisiejszych czasach można spotkać zarówno oryginalny EMS, jak i zmodyfikowany EMS Plus, a standardy te początkowo nie są ze sobą kompatybilne (choć wsparcie dla obu z nich może być zapewnione w poszczególnych urządzeniach). Tak więc, konkretna wersja magistrali EMS powinna być określona osobno; należy zauważyć, że w sprzęcie Bosch występuje głównie wersja oryginalna, a w urządzeniach Buderus - EMS Plus (chociaż możliwe są wyjątki tam i tam).Średnica komina
Średnica rury, przez którą produkty spalania są usuwane z komory spalania.
W kotłach z zamkniętą komorą spalania często używany jest tzw. komin koaksjalny, składający się z dwóch rur w wkładanych jedna w drugą. W tym przypadku produkty spalania są usuwane z komory spalania przez rurę wewnętrzną, a powietrze jest dostarczane przez szczelinę między rurą wewnętrzną i zewnętrzną. W przypadku takich kominów średnica jest zwykle wskazywana w postaci dwóch liczb - odpowiednio średnicy wewnętrznej i zewnętrznej rury. Najpopularniejsze wartości to:
60/100 ,
80/80 a > i 80/125 . Zaś komin klasyczny (nie współosiowy) może być
100 ,
110 < / a>, 125 ,
130 ,
140 ,
150 ,
160 ,
180 i
200 mm .
Nominalne ciśnienie wlotowe gazu
Optymalne ciśnienie gazu dostarczanego do wlotu instalacji kotłowej. Najczęściej wskazywane jest dla gazu ziemnego i wynosi około 15-20 mbar. Parametr ten musi odpowiadać parametrom systemu zasilania gazem. Jednak ciśnienie w ostatnim może być wyższe, co może wymagać zainstalowania specjalnego reduktora gazu - problem ten rozwiązuje się przy instalacji kotła, co może wykonać tylko wykwalifikowany technik gazowy.
Pojemność zbiornika wyrównawczego
Pojemność zbiornika wyrównawczego dostarczanego z kotłem.
Naczynie wzbiorcze jest przeznaczony do odprowadzania nadmiaru wody z systemu grzewczego, gdy całkowita objętość cieczy wzrasta w wyniku nagrzewania. Składa się on z dwóch części połączonych elastyczną membraną: w jednej, hermetycznie zamkniętej, znajduje się powietrze pod ciśnieniem, do drugiej dostaje się "zbędna" woda, ściskając membranę. Pozwala to uniknąć katastrofalnego wzrostu ciśnienia w obiegu grzewczym. Optymalna pojemność zbiornika wyrównawczego zależy od szeregu parametrów systemu, przede wszystkim objętości i składu chłodziwa; szczegółowe zalecenia dotyczące obliczeń można znaleźć w specjalnych źródłach.
Ciśnienie w zbiorniku wyrównawczym
Ciśnienie gazu w hermetycznie zamkniętej części zbiornika wyrównawczego (więcej szczegółów na temat konstrukcji, patrz "Pojemność zbiornika wyrównawczego"). Wymagane ciśnienie w zbiorniku wyrównawczym musi być o około 0,3 bar wyższe niż początkowe ciśnienie w układzie. Z kolei ciśnienie początkowe zależy bezpośrednio od całkowitej wysokości systemu grzewczego, a raczej od różnicy między wysokością najwyższych i najniższych punktów systemu grzewczego. Można to wywnioskować z przybliżonego wzoru P = h/10, gdzie P jest ciśnieniem początkowym w barach, h jest różnicą między wysokościami najwyższego i najniższego punktu układu w metrach. Jeśli więc różnica wysokości wynosi 2 m, ciśnienie początkowe w układzie wynosi 0,2 bar, a ciśnienie w zbiorniku wyrównawczym musi wynosić co najmniej 0,5 bar.
Wymiennik ciepła
Materiał pierwotnego wymiennika ciepła, w którym energia cieplna z gorących produktów spalania jest przekazywana do nośnika ciepła. Sprawność kotła, szybkość ogrzewania i żywotność urządzenia zależą bezpośrednio od materiału wymiennika ciepła.
—
Miedziany. Miedź to materiał o najlepszych właściwościach wymiany ciepła i wysokiej odporności na korozję. Szybko się nagrzewa, co oszczędza energię w czasie pracy kotła grzewczego, ma niski współczynnik chropowatości i długą żywotność. Jedyną wadą tego metalu jest jego wysoki koszt. Miedziane wymienniki ciepła są instalowane w sprzęcie klasy średniej i premium.
—
Aluminiowy. Aluminium jako materiał do produkcji wymiennika ciepła charakteryzuje się doskonałą przewodnością cieplną, długą żywotnością, ponadto jest tańszy od
miedzi. Aby obniżyć koszty produkcji w miedzianych wymiennikach ciepła, producenci starają się zmniejszyć grubość ścianki. Nie dotyczy to aluminium.
—
Żeliwny. Kotły z żeliwnym wymiennikiem ciepła nagrzewają się długo i powoli stygną, zachowując ciepło przez długi czas po zatrzymaniu ogrzewania. Ponadto żeliwo wyróżnia się wysoką pojemnością cieplną i niską podatnością na korozję. Żywotność jednostki żeliwnej może wynosić 30 lub 50 lat. Odwrotną stroną medalu są ogromne wskaźniki masy i gabarytów urządzeń grzewczych, dlatego kotły z żeliwnym wymienniki
...em ciepła produkowane są głównie w układzie podłogowym. Ponadto żeliwo nie toleruje nagłych zmian temperatury – może to powodować pęknięcia.
— Stalowy. Najbardziej rozpowszechnione są stalowe wymienniki ciepła w kotłach grzewczych. Stal cechuje się wysoką ciągliwością i wytrzymałością pod wpływem wysokich temperatur, jest tania, łatwa w obróbce na etapach produkcji. Jednak stalowe wymienniki ciepła są podatne na korozję. W efekcie nie są tak trwałe.
— Ze stali nierdzewnej. Wymienniki ciepła wykonane ze stali nierdzewnej to „rzadkie ptaki” w kotłach grzewczych, co tłumaczy się wysokimi kosztami użytkowania tego materiału. Lecz łączą one w sobie zalety żeliwa i stali. Stal nierdzewna wykazuje wysoką odporność na korozję, szok termiczny, niską bezwładność i długą żywotność.