Tryb nocny
Polska
Katalog   /   Sprzęt fotograficzny   /   Przyrządy optyczne   /   Teleskopy

Porównanie Levenhuk LabZZ D1 vs Celestron FirstScope 76

Dodaj do porównania
Levenhuk LabZZ D1
Celestron FirstScope 76
Levenhuk LabZZ D1Celestron FirstScope 76
Porównaj ceny 1Porównaj ceny 3
TOP sprzedawcy
Układ optycznysoczewkowy (refraktor)soczewkowy (refraktor)
MontażDobsonaDobsona
Specyfikacja
Średnica obiektywu76 mm76 mm
Ogniskowa300 mm300 mm
Maks. użyteczne powiększenie152 x152 x
Maks. powiększenie rozdzielcze114 x114 x
Minimalne powiększenie11 x11 x
Apertura1/3.951/3.9
Zdolność przenikania11.9 magnitudo
Zdolność rozdzielcza (Dawes)1.53 arcsec
Zdolność rozdzielcza (Rayleigh)1.83 arcsec
Cechy dodatkowe
Wyciąg okularowyzębatkowy
OkularyH6 (50x), H20 (15x)20 mm, 4 mm
Średnica gniazda okularu1.25 "1.25 "
Soczewka Barlowa2 х
Powłoki przeciwodblaskowe
Zwierciadłosferycznesferyczne
Dane ogólne
Wysokość statywu34 cm
Waga całkowita1.91 kg2 kg
Data dodania do E-Kataloglistopad 2017marzec 2015

Apertura

Stosunek apertury teleskopu charakteryzuje całkowitą ilość światła „przechwyconego” przez system i przekazanego do oka obserwatora. Pod względem liczb wartość przysłony to stosunek średnicy obiektywu do ogniskowej (patrz wyżej): na przykład w przypadku systemu z przysłoną 100 mm i ogniskową 1000 mm wartość przysłony będzie wynosił 100/1000 = 1/10. Wskaźnik ten jest również nazywany „aperturą względną”.

Przy wyborze według przesłony należy przede wszystkim wziąć pod uwagę cele, do których planowana jest luneta. Duża apertura względna jest bardzo wygodna w astrofotografii, ponieważ przepuszcza dużą ilość światła i umożliwia pracę przy dłuższych czasach otwarcia migawki. Ale do obserwacji wizualnych nie jest wymagany wysoki współczynnik apertury - wręcz przeciwnie, teleskopy o dłuższym ognisku (a tym samym o mniejszej aperturze) charakteryzują się niższym poziomem aberracji i umożliwiają stosowanie wygodniejszych okularów do obserwacji. Zwracamy również uwagę, że duża apertura wymaga zastosowania dużych obiektywów, co odpowiednio wpływa na wielkość, wagę i cenę teleskopu.

Zdolność przenikania

Przepuszczalność teleskopu to wielkość najsłabszych gwiazd, które można przez niego zobaczyć w idealnych warunkach obserwacji (w zenicie, w czystym powietrzu). Wskaźnik ten opisuje zdolność teleskopu do widzenia małych i słabo świecących obiektów astronomicznych.

Oceniając możliwości teleskopu dla tego wskaźnika, należy pamiętać, że im jaśniejszy obiekt, tym mniejsza jego jasność: na przykład dla Syriusza, najjaśniejszej gwiazdy na nocnym niebie, wskaźnik ten wynosi -1, a dla wielu ciemniejsza Gwiazda Polarna - około 2. Największa jasność widoczna gołym okiem to około 6,5.

Zatem im większa liczba w tej charakterystyce, tym lepiej teleskop nadaje się do pracy ze słabymi obiektami. Najskromniejsze nowoczesne modele są w stanie zobaczyć gwiazdy tak małe jak 10, a najbardziej zaawansowane systemy konsumenckie są w stanie widzieć ponad 15 – prawie 4000 razy słabsze niż minimum dla gołego oka.

Zauważ, że rzeczywista przepuszczalność jest bezpośrednio związana ze współczynnikiem powiększenia. Uważa się, że teleskopy osiągają maksimum dla tego wskaźnika, gdy używa się okularów zapewniających powiększenie rzędu 0,7D (gdzie D to średnica obiektywu w milimetrach).

Zdolność rozdzielcza (Dawes)

Rozdzielczość teleskopu wyznaczona według kryterium Dawesa. Wskaźnik ten jest również nazywany „limitem Dawesa”. (Istnieje też czytanie Davesa, ale nie jest poprawne).

Rozdzielczość w tym przypadku jest wskaźnikiem charakteryzującym zdolność teleskopu do rozróżniania poszczególnych źródeł światła znajdujących się w bliskiej odległości, innymi słowy zdolność widzenia ich dokładnie jako oddzielnych obiektów. Wskaźnik ten jest mierzony w sekundach łukowych (1 '' to 1/3600 stopnia). W odległościach mniejszych niż rozdzielczość źródła te (na przykład gwiazdy podwójne) połączą się w solidny punkt. Tak więc im niższe liczby w tym punkcie, im wyższa rozdzielczość, tym lepiej teleskop nadaje się do oglądania blisko położonych obiektów. Należy jednak pamiętać, że w tym przypadku nie mówimy o możliwości widzenia zupełnie odrębnych obiektów od siebie, a jedynie o możliwości identyfikacji dwóch źródeł światła w wydłużonej plamce świetlnej, scalonej (dla obserwatora) w jedno. Aby obserwator mógł zobaczyć dwa oddzielne źródła, odległość między nimi musi być w przybliżeniu dwukrotnie większa od deklarowanej rozdzielczości.

Zgodnie z kryterium Dawesa rozdzielczość zależy bezpośrednio od średnicy obiektywu teleskopu (patrz wyżej): im większa apertura, tym mniejszy może być kąt między oddzielnie widocznymi obiektami i wyższa rozdzielczość. Ogólnie rzecz biorąc, wskaźnik ten jest podobny do kryterium Rayleigha (patrz „Rozdzielczość (Rayleigh)”), ale został wyprowadzon...y eksperymentalnie, a nie teoretycznie. Dlatego z jednej strony limit Dawesa dokładniej opisuje praktyczne możliwości teleskopu, z drugiej strony zgodność z tymi możliwościami w dużej mierze zależy od subiektywnych cech obserwatora. Mówiąc najprościej, osoba bez doświadczenia w obserwowaniu podwójnych obiektów lub mająca problemy ze wzrokiem może po prostu nie „rozpoznawać” dwóch źródeł światła w wydłużonym miejscu, jeśli znajdują się one w odległości porównywalnej z limitem Dawesa. Więcej informacji na temat różnicy między kryteriami można znaleźć w rozdziale Rozdzielczość (Rayleigh).

Zdolność rozdzielcza (Rayleigh)

Rozdzielczość teleskopu wyznaczona według kryterium Rayleigha.

Rozdzielczość w tym przypadku jest wskaźnikiem charakteryzującym zdolność teleskopu do rozróżniania poszczególnych źródeł światła znajdujących się w bliskiej odległości, innymi słowy zdolność widzenia ich dokładnie jako oddzielnych obiektów. Wskaźnik ten jest mierzony w sekundach łukowych (1 '' to 1/3600 stopnia). W odległościach mniejszych niż rozdzielczość źródła te (na przykład gwiazdy podwójne) połączą się w solidny punkt. Tak więc im niższe liczby w tym punkcie, im wyższa rozdzielczość, tym lepiej teleskop nadaje się do oglądania blisko położonych obiektów. Należy jednak pamiętać, że w tym przypadku nie mówimy o możliwości widzenia zupełnie odrębnych obiektów od siebie, a jedynie o możliwości identyfikacji dwóch źródeł światła w wydłużonej plamce świetlnej, scalonej (dla obserwatora) w jedno. Aby obserwator mógł zobaczyć dwa oddzielne źródła, odległość między nimi musi być w przybliżeniu dwukrotnie większa od deklarowanej rozdzielczości.

Kryterium Rayleigha jest wartością teoretyczną i jest obliczane przy użyciu dość skomplikowanych wzorów, które uwzględniają, oprócz średnicy obiektywu teleskopu (patrz wyżej), również długość fali obserwowanego światła, odległość między obiektami a obserwatorem itp. . Oddzielnie widoczne, zgodnie z tą metodą, są uważane za obiekty znajdujące się w większej odległości od siebie niż dla opisanej powyżej granicy Dawesa; dlatego dla tego samego telesko...pu rozdzielczość Rayleigha będzie niższa niż rozdzielczość Dawesa (a liczby wskazane w tym punkcie są odpowiednio wyższe). Z drugiej strony wskaźnik ten jest mniej zależny od cech osobistych użytkownika: nawet niedoświadczeni obserwatorzy potrafią rozróżnić obiekty w odległości odpowiadającej kryterium Rayleigha.

Wyciąg okularowy

Rodzaj wyciągu okularowego (mechaniczna jednostka odpowiedzialna za ogniskowanie obrazu) przewidziany w konstrukcji lunety. Procedura ogniskowania polega na przesunięciu okularu teleskopu względem obiektywu; różne typy wyciągów okularowych różnią się rodzajem mechanizmu, który zapewnia taki ruch.

- Stojak. Jak sama nazwa wskazuje, takie wyciągi okularowe wykorzystują mechanizm zębatkowy, który jest poruszany poprzez obrót zębnika; a ten bieg z kolei jest powiązany z pokrętłem ustawiania ostrości. Główne zalety systemów regałowych to prostota i niski koszt. Jednocześnie takie mechanizmy nie są zbyt dokładne, a ponadto często mają luzy. Dlatego wyciągi okularowe tego typu są typowe głównie dla niedrogich teleskopów klasy podstawowej.

- Crayforda. Wyciągi okularowe systemu Crayforda wykorzystują mechanizmy rolkowe, w których nie ma zębów, a ruch okularu odbywa się dzięki sile tarcia pomiędzy rolką a ruchomą powierzchnią. Są uważane za znacznie bardziej zaawansowane niż zębatka i zębnik - w szczególności ze względu na brak luzów i płynne ustawianie ostrości. Jedyną poważną wadę „Crayfordów” można nazwać pewnym prawdopodobieństwem poślizgu; jednak ze względu na użycie specjalnych materiałów i innych poprawek projektowych prawdopodobieństwo to jest praktycznie zredukowane do zera. Z tego powodu ten typ wyciągu okularowego można znaleźć nawet w najbardziej zaawansowanych teleskopach profesjonalnych.

- Gwintowany. Konstr...ukcja wyciągu gwintowanego opiera się na dwóch tubach – jednej wsuwanej w drugą i osadzonej na gwincie. Ruch okularu potrzebny do ogniskowania odbywa się poprzez obrót wokół osi podłużnej - podobnie jak śruba porusza się w gwincie. Takie wyciągi okularowe są niezwykle proste i niedrogie, ale są podatne na zauważalne luzy i wymagają regularnego smarowania. Poza tym są dość niewygodne dla astrofotografii: podczas ustawiania ostrości trzeba obracać kamerą podłączoną do okularu. Dlatego tego typu mechanizm ustawiania ostrości jest dość rzadki, głównie w małych i stosunkowo niedrogich teleskopach.

Okulary

W tym punkcie wyszczególniono okulary znajdujące się w standardowym zakresie dostawy teleskopu, a dokładniej ogniskowe tych okularów.

Mając te dane i znając ogniskową teleskopu (patrz wyżej), można określić powiększenia, jakie urządzenie może dać po wyjęciu z pudełka. W przypadku teleskopu bez soczewek Barlowa (patrz niżej) i innych dodatkowych elementów o podobnym przeznaczeniu, powiększenie będzie równe ogniskowej obiektywu podzielonej przez ogniskową okularu. Na przykład optyka 1000 mm wyposażona w „oczy” 5 i 10 mm będzie w stanie uzyskać powiększenia 1000/5=200x i 1000/10=100x.

W przypadku braku odpowiedniego okularu w zestawie, można go zazwyczaj dokupić osobno.

Soczewka Barlowa

Krotność powiększenia soczewki Barlowa, przewidziana w teleskopie.

Taki przyrząd (z reguły jest zdejmowany) reprezentuje sobą soczewkę rozpraszającą lub układ soczewek, montowany przed okularem. W rzeczywistości soczewka Barlowa zwiększa ogniskową teleskopu, zapewniając większy stopień powiększenia (i mniejszy kąt widzenia) przy tym samym okularze. Jednocześnie krotność powiększenia z soczewką można obliczyć mnożąc „natywne” powiększenie danego okularu przez powiększenie samej soczewki: na przykład, jeśli teleskop z okularem 10 mm zapewniał powiększenie 100x, następnie przy montażu soczewki Barlowa 3x wskaźnik ten będzie wynosić 100x3=300x. Oczywiście ten sam efekt można osiągnąć przy montażu okularu o zmniejszonej ogniskowej. Jednakże po pierwsze, taki okular nie zawsze jest dostępny w sprzedaży; po drugie, jedna soczewka Barlowa może być używana ze wszystkimi okularami, pasującymi do teleskopu, poszerzając arsenał dostępnych krotności. Możliwość ta jest szczególnie wygodna w tych przypadkach, gdy obserwator potrzebuje rozbudowanego zestawu wariantów stopnia powiększenia. Przykładowo zestaw z 4 okularów i jednej soczewki Barlowa daje 8 wariantów powiększenia, a praca z takim zestawem jest wygodniejsza niż z 8 pojedynczymi okularami.

Waga całkowita

Całkowita waga całego teleskopu, wliczając montaż i statyw.

Niewielka waga jest wygodna przede wszystkim do „polowego” użytkowania i częstych ruchów z miejsca na miejsce. Natomiast minusem jest skromna wydajność, wysoki koszt, a czasem jedno i drugie. Dodatkowo podstawka niweluje wstrząsy i wibracje gorzej, co może mieć znaczenie w niektórych sytuacjach (np. jeśli punkt obserwacji znajduje się w pobliżu torów kolejowych, przez które często przejeżdżają pociągi towarowe).
Dynamika cen
Levenhuk LabZZ D1 często porównują