Tryb nocny
Polska
Katalog   /   Komputery   /   Sprzęt sieciowy   /   Urządzenia sieciowe

Porównanie TP-LINK TL-MR6400 V2 vs TP-LINK Archer MR200

Dodaj do porównania
TP-LINK TL-MR6400 V2
TP-LINK Archer MR200
TP-LINK TL-MR6400 V2TP-LINK Archer MR200
od 362 zł
Produkt jest niedostępny
Porównaj ceny 30
Opinie
0
1
0
0
TOP sprzedawcy
Główne
Dwuzakresowy. Mobilna aplikacja. Automatyczne dostosowanie sieci do karty SIM.
Opis dotyczy modelu MR200 w wersji sprzętowej V4. Wcześniejsze wersje mogą się nieco różnić konstrukcją, antenami stałymi.
Rodzaj urządzeniarouterrouter
Wejście danych (port WAN)
Ethernet (RJ45)
karta SIM
Ethernet (RJ45)
karta SIM
Prędkość 4G (LTE)Cat.4 (150/50 Mb/s)Cat.4 (150/50 Mb/s)
Połączenie Wi-Fi
Standardy Wi-Fi
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
 
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Zakres częstotliwości pracy
2.4 GHz
 
2.4 GHz
5 GHz
Pasma pracydwuzakresowy (2,4 GHz i 5 GHz)
Maks. prędkość przy 2.4 GHz300 Mb/s
Maks. prędkość przy 5 GHz433 Mb/s
Porty
LAN
4 porty
100 Mb/s
4 porty
100 Mb/s
Porty WAN/LAN z opcją ponownego przypisania1 port1 port
Antena i nadajnik
Liczba anten Wi-Fi2 szt.3 szt.
Typ antenywewnętrznawewnętrzna
Wymienna antena
Liczba anten 2.4 GHz2 szt.2 szt.
Liczba anten 5 GHz1 szt.
Anteny (internet mobilny)2 szt. wymienne2 szt. wymienne
Moc nadajnika20 dBm23 dBm
Moc sygnału 2.4 GHz20 dBm
Moc sygnału 5 GHz23 dBm
Funkcje
Funkcje i możliwości
NAT
zapora sieciowa (Firewall)
NAT
zapora sieciowa (Firewall)
Cechy dodatkowe
serwer DHCP
obsługa VPN
obsługa DDNS
obsługa DMZ
serwer DHCP
obsługa VPN
obsługa DDNS
obsługa DMZ
Bezpieczeństwo
Szyfrowanie
WPA
WEP
WPA2
WPA
WEP
WPA2
Dane ogólne
Wymiary202x141x34 mm202x141x34 mm
Kolor obudowy
Data dodania do E-Katalogkwiecień 2016kwiecień 2016

Standardy Wi-Fi

Standardy Wi-Fi obsługiwane przez sprzęt. W dzisiejszych czasach oprócz nowoczesnych standardów Wi-Fi 4 (802.11n), Wi-Fi 5 (802.11ac), Wi-Fi 6 (802.11ax) (jego odmiana Wi-Fi 6E), Wi-Fi 7 (802.11be) oraz WiGig (802.11ad), można również spotkać wsparcie dla wcześniejszych wersji - Wi- Fi 3 (802.11g), a nawet Wi-Fi 1 (802.11b). Oto bardziej szczegółowy opis każdej z tych wersji:

— Wi-Fi 3 (802.11g). Przestarzały standard, podobnie jak Wi-Fi 1 (802.11b), który odszedł w niepamięć. Był szeroko stosowany przed pojawieniem się Wi-Fi 4, obecnie jest używany głównie jako dodatek do nowszych wersji - w szczególności w celu zapewnienia kompatybilności z przestarzałym i niedrogim sprzętem. Pracuje na częstotliwości 2,4 GHz, maksymalna prędkość wymiany danych to 54 Mb/s.

— Wi-Fi 4 (802.11n). Pierwszy z powszechnie używanych standardów obsługujący 5 GHz; może pracować w tym zakresie lub w klasycznym 2,4 GHz. Warto podkreślić, że niektóre modele sprzętu Wi-Fi na ten standard wykorzystują tylko 5 GHz, dlatego są niekompatybilne z wcześniejszymi wersjami Wi-Fi. Maksymalna prędkość dla Wi-Fi 4 to 600 Mb/s; w nowoczesnych urządzeniach bezprzewodowych standard ten jest bardzo popularny, dopiero niedawno zaczął być wypierany na tej pozycji pr...zez Wi-Fi 5.

— Wi-Fi 5 (802.11ac). Następca Wi-Fi 4, który ostatecznie przeniósł się na pasmo 5 GHz, co pozytywnie wpłynęło na niezawodność połączenia i prędkość transmisji danych: wynosi do 1,69 Gb/s na antenę i ogólnie do 6,77 Gb/s. Ponadto jest to pierwsza wersja, w której w pełni zaimplementowano technologię Beamforming (więcej informacji można znaleźć w „Funkcje i możliwości”).

— Wi-Fi 6, Wi-Fi 6E (802.11ax). Rozwinięcie Wi-Fi 5, które wprowadziło zarówno wzrost prędkości do 10 Gb/s, jak i szereg ważnych usprawnień. Jedną z najważniejszych nowości jest zastosowanie szerokiego zakresu częstotliwości – od 1 do 7 GHz; to w szczególności pozwala automatycznie wybierać najmniej obciążone pasmo częstotliwości, co pozytywnie wpływa na prędkość i niezawodność połączenia. Jednocześnie urządzenia Wi-Fi 6 mogą działać na klasycznych częstotliwościach 2,4 GHz i 5 GHz, a modyfikacja standardu Wi-Fi 6E może działać na częstotliwościach od 5,9 do 7 GHz; ogólnie uważa się, że urządzenia z obsługą Wi-Fi 6E pracują z częstotliwością 6 GHz, przy pełnej kompatybilności z wcześniejszymi standardami. Dodatkowo w tej wersji wprowadzono pewne usprawnienia dotyczące jednoczesnej pracy kilku urządzeń na tym samym kanale, w szczególności chodzi o technologię OFDMA. Dzięki temu Wi-Fi 6 daje najmniejszy ze współczesnych standardów spadek prędkości przy obciążonym powietrzu, a modyfikacja Wi-Fi 6E działająca na 6 GHz ma najmniej zakłóceń.

— Wi-Fi 7 (802.11be). Ten standard Wi-Fi zaczął być wdrażany w 2023 roku. Dzięki zastosowaniu modulacji 4096-QAM może on osiągać maksymalną teoretyczną prędkość transmisji danych do 46 Gb/s. Wi-Fi 7 obsługuje trzy pasma częstotliwości: 2,4 GHz, 5 GHz i 6 GHz. Maksymalna szerokość pasma standardu została zwiększona ze 160 MHz do 320 MHz — im szerszy kanał, tym więcej danych może on przesłać. Wśród interesujących nowości Wi-Fi 7 odnotowano opracowanie MLO (Multi-Link Operation) — za jego pomocą podłączone urządzenia wymieniają dane przy użyciu kilku kanałów i pasm częstotliwości jednocześnie, co jest szczególnie ważne w przypadku gier VR i online. Technologia Multiple Resource Unit została zaprojektowana w celu zminimalizowania opóźnień w komunikacji, gdy podłączonych jest wiele urządzeń klienckich. Nowy protokół 16x16 MIMO ma również na celu zwiększenie przepustowości przy dużej liczbie jednoczesnych połączeń, podwajając liczbę strumieni przestrzennych w porównaniu do poprzedniego standardu Wi-Fi 6.

— WiGig (802.11ad). Standard Wi-Fi wykorzystujący częstotliwość roboczą 60 GHz; prędkość przesyłania danych może wynosić do 10 Gb/s (w zależności od konkretnej wersji WiGig). Kanał 60 GHz jest znacznie mniej obciążony niż popularniejsze kanały 2,4 GHz i 5 GHz, co pozytywnie wpływa na niezawodność transmisji danych i zmniejsza opóźnienia; to ostatnie jest szczególnie ważne w grach i niektórych innych specjalistycznych zadaniach. Z drugiej strony, zwiększenie częstotliwości znacznie zmniejszyło zasięg połączenia (więcej szczegółów w punkcie „Zakres częstotliwości”), więc w praktyce ten standard nadaje się tylko do komunikacji w tym samym pomieszczeniu.

Należy pamiętać, że w praktyce prędkość przesyłania danych jest zwykle znacznie niższa od teoretycznego maksimum – zwłaszcza, gdy na tym samym kanale pracuje kilka urządzeń Wi-Fi. Warto również zauważyć, że różne standardy są ze sobą wstecznie kompatybilne (z ograniczeniem prędkości dla tego wolniejszego), pod warunkiem, że częstotliwości się pokrywają: na przykład 802.11ac może współpracować z 802.11n, lecz nie z 802.11g.

Zakres częstotliwości pracy

Standardowe pasma przenoszenia Wi-Fi obsługiwane przez urządzenie.

Parametr ten jest bezpośrednio powiązany ze standardami Wi-Fi (patrz wyżej), z którymi sprzęt jest zgodny. Jednocześnie istnieją standardy, które obejmują kilka zakresów naraz (takie jak Wi-Fi 4 i Wi-Fi 6) i nie każde urządzenie z nimi kompatybilne obsługuje jednocześnie wszystkie te zakresy; dlatego w takich przypadkach kwestię tę należy wyjaśnić osobno. Ponadto częstotliwości powszechnie używane w naszych czasach mają wspólne cechy, oto one:

- 2,4 GHz. Pasmo uważane za klasyczne: stosowane w najwcześniejszych standardach Wi-Fi i obsługiwane przez wiele nowoczesnych wersji. Dlatego do tej pory całkiem sporo sprzętu Wi-Fi działa tylko z częstotliwością 2,4 GHz (choć wyjątki są coraz częstsze). Główne zalety takiego sprzętu to prostota, niski koszt i kompatybilność nawet z przestarzałymi urządzeniami bezprzewodowymi. Z drugiej strony, pasmo 2,4 GHz jest niezwykle obciążone: oprócz dużej liczby urządzeń Wi-Fi jest wykorzystywane także przez moduły Bluetooth i kilka innych typów elektroniki. Może to pogorszyć jakość i szybkość komunikacji.

- 5 GHz. Pasmo wprowadzone w celu przezwyciężenia niedociągnięć 2,4 GHz - w szczególności w celu odciążenia kanałów komunikacyjnych i oddzielenia Wi-Fi od innych technologii bezprzewodowych. Dodatkowo zwiększenie częstotliwości pozwoliło na szybszą komunikację. 5 GHz jest używane jako jedna z częstotliwości pracy...w standardach Wi-Fi 4 i Wi-Fi 6 (patrz wyżej) oraz jako jedyne w Wi-Fi 5. Tak więc na rynku można znaleźć urządzenia pracujące tylko w 5 GHz, ale bardziej rozpowszechniony jest sprzęt z wieloma pasmami, gdzie ta częstotliwość jest tylko jedną z obsługiwanych.

- 6 GHz. Nieobciążona częstotliwość wprowadzona do użytku od generacji Wi-Fi 6E. Nowe pasmo przenoszenia zapewnia możliwość jednoczesnej obsługi dużej liczby urządzeń klienckich z dużą prędkością przy minimalnej ilości zakłóceń i opóźnień w transmisji sygnału. W tej chwili jest to najwolniejszy, najszerszy i najszybszy zasięg Wi-Fi. Jednak w niektórych regionach pasmo 6 GHz pozostaje niedostępne, ponieważ jest zajmowane przez łączność bezprzewodową wojskową, stacjonarną lub radiową.

- 60 GHz. Pasmo realizowane w standardzie WiGig; na dzień dzisiejszy jest używane tylko w nim i jako jedyne. Znaczący wzrost częstotliwości w porównaniu do bardziej powszechnych opcji 2,4 GHz i 5 GHz ma pozytywny wpływ na jakość połączenia. Tak więc, przy tym samym teoretycznym maksimum, co Wi-Fi 6 (10 Gb/s), standard WiGig zapewnia wyższą rzeczywistą szybkość wymiany danych, a także mniej opóźnień; jest to szczególnie ważne w grach i niektórych konkretnych zadaniach. Wadą tych zalet jest krótki zasięg komunikacji: nawet przy użyciu Beamforming (patrz „Funkcje i możliwości”) nie przekracza 10 m na otwartej przestrzeni, a przeszkoda taka jak ściana może stać się nie do pokonania dla kanału 60 GHz. Dlatego w urządzeniach Wi-Fi taka częstotliwość występuje głównie wśród dość specyficznych urządzeń - punktów dostępowych (w tym kierunkowych), które są przeznaczone do łączenia poszczególnych segmentów sieci w trybie pomostu (patrz ibid.). To właśnie ten sposób użytkowania jest jednym z najbardziej optymalnych, biorąc pod uwagę właściwości tego pasma. Jednak wsparcie dla 60 GHz coraz częściej znajduje się również w gadżetach konsumenckich (smartfony, laptopy), dlatego produkowane są również routery dla tej częstotliwości. - Własna częstotliwość. W rzadkich przypadkach działanie sprzętu Wi-Fi jest możliwe na jego własnych częstotliwościach, które nie mieszczą się w standardowych ogólnie przyjętych wartościach. Takie urządzenia wykorzystywane są głównie do budowy mostów radiowych „punkt-punkt” i „punkt-wielopunkt”. Ich zalety to szum o niskiej częstotliwości ze standardowych sieci Wi-Fi, a co za tym idzie - zwiększony zasięg komunikacji. Należy zauważyć, że nie można połączyć się bezpośrednio z takimi urządzeniami z laptopa lub smartfona. Niezbędne jest również uwzględnienie aspektu legislacyjnego, ponieważ w każdym kraju wykorzystanie częstotliwości jest inaczej regulowane.

Pasma pracy

Liczba pasm i kanałów komunikacji bezprzewodowej obsługiwanych przez router. Określa się tylko dla modeli z więcej niż jednym pasmem.

- Dwupasmowe (2,4 GHz i 5 GHz). Urządzenia obsługujące jednocześnie dwa popularne pasma komunikacyjne - 2,4 GHz i 5 GHz - w formacie „jeden kanał komunikacyjny na pasmo”. Zapewnia to zgodność z większością standardów Wi-Fi (patrz wyżej), a w niektórych przypadkach ma również pozytywny wpływ na jakość połączenia. Na przykład adapter Wi-Fi (patrz „Typ urządzenia”) z tą funkcją może zapewniać możliwość oceny przeciążenia obu pasm i automatycznego wyboru mniej obciążonego.

- Trójkanałowy (2,4 GHz i 5 GHz w 2 kanałach). Ulepszona wersja dwupasmowego formatu pracy: w paśmie 5 GHz komunikacja odbywa się dwoma kanałami. Pozwala to np. na zapewnienie trzech kanałów bezprzewodowych na jednym routerze jednocześnie (trzy widoczne sieci na liście sieci bezprzewodowych) i osiągnięcie jeszcze większej przepustowości. Zalety tego formatu są szczególnie widoczne, gdy router współpracuje jednocześnie z kilkoma urządzeniami bezprzewodowymi.

- Trójpasmowy (2.4 GHz, 5 GHz, 60 GHz). Najbardziej „wszystkożerna” odmiana współczesnego sprzętu Wi-Fi, kompatybilna ze wszystkimi popularnymi standardami - od przestarzałego 802.11 b/g po stosunkowo nowy 802.11 ad. Ponadto obfitość pasm przyczynia się do wzrostu prędkości, zwłaszcza przy prac...y z urządzeniami wielopasmowymi.

Maks. prędkość przy 2.4 GHz

Maksymalna prędkość zapewniana przez urządzenie przy łączności bezprzewodowej w paśmie 2.4 GHz.

Pasmo to jest wykorzystywane w większości współczesnych standardów Wi-Fi (patrz wyżej) - jako jedno najbardziej z dostępnych lub wręcz jedyne. Teoretyczne maksimum to 600 MB/s. W rzeczywistości Wi-Fi na częstotliwości 2.4 GHz jest wykorzystywane przez dużą liczbę urządzeń klienckich, z czego wynika przeciążenie kanałów transmisji danych. Ponadto liczba anten wpływa na wydajność prędkości sprzętu. Podaną w specyfikacji prędkość można osiągnąć tylko w warunkach idealnych. W praktyce może być ona zauważalnie mniejsza (często kilkukrotnie), zwłaszcza przy obfitości urządzeń bezprzewodowych podłączonych do sprzętu. Dla zrozumienia rzeczywistych możliwości sprzętu Wi-Fi maksymalna prędkość na 2.4 GHz jest podawana w specyfikacji poszczególnych modeli. Jeśli chodzi o liczby, to ze względu na możliwości w paśmie 2.4 GHz współczesny sprzęt umownie dzieli się na modele o prędkościach do 500 MB/s włącznie i powyżej 500 MB/s.

Maks. prędkość przy 5 GHz

Maksymalna prędkość, obsługiwana przez urządzenie przy łączności bezprzewodowej w paśmie 5 GHz.

Pasmo to jest wykorzystywane w Wi-Fi 4, Wi-Fi 6 i Wi-Fi 6E jako jedno z dostępnych, w Wi-Fi 5 jako jedyne (patrz „Standardy Wi-Fi”). Prędkość maksymalna podawana jest w specyfikacji w celu zaznaczenia rzeczywistych możliwości konkretnego sprzętu - mogą być one zauważalnie skromniejsze od ogólnych możliwości standardu. Poza tym wszystko zależy od generacji Wi-Fi. Na przykład urządzenia obsługujące Wi-Fi 5 mogą teoretycznie przesyłać do 6928 Mb/s (przy użyciu ośmiu anten), a Wi-Fi 6 do 9607 Mb/s (przy użyciu tychże ośmiu strumieni przestrzennych). Maksymalna możliwa prędkość łączności jest osiągana w określonych warunkach i nie każdy model sprzętu Wi-Fi w pełni je spełnia. Konkretne liczby są umownie podzielone na kilka grup: wartość do 500 MB/s jest dość skromna, wiele urządzeń obsługuje prędkości w zakresie 500 - 1000 MB/s, wskaźniki 1 - 2 GB/s można zaliczyć do średnich wartości, a najbardziej zaawansowane modele w swojej klasie zapewniają prędkość wymiany danych na poziomie ponad 2 GB/s.

Liczba anten Wi-Fi

We współczesnym sprzęcie Wi-Fi wskaźnik ten może być różny: oprócz najprostszych urządzeń z 1 anteną, istnieją modele, w których liczba ta wynosi 2, 3, 4, a nawet więcej. Sens stosowania kilku anten tkwi w dwóch szczegółach. Po pierwsze, jeśli na antenę przypada kilka urządzeń zewnętrznych, muszą one dzielić między sobą szerokość pasma, a rzeczywista prędkość łączności dla każdego abonenta odpowiednio spada. Po drugie, taka konstrukcja może być również wymagana przy komunikacji z jednym urządzeniem zewnętrznym - do współpracy z technologią MU-MIMO (patrz poniżej), co pozwala w pełni wykorzystać możliwości nowoczesnych standardów Wi-Fi.

W każdym razie więcej anten oznacza zwykle bardziej zaawansowane i funkcjonalne urządzenie. Z drugiej strony, parametr ten znacząco wpływa na koszt; dlatego sensowne jest poszukiwanie sprzętu z dużą liczbą anten, głównie wtedy, gdy krytyczna jest szybkość i stabilność łączności.

Wymienna antena

Obecność wymiennej anteny (lub kilku anten) w konstrukcji urządzenia.

Wymiennymi mogą być tylko anteny zewnętrzne (patrz „Typ anteny”). Taka konstrukcja jest szczególnie wygodna w przechowywaniu i transporcie: pozwala na usunięcie zewnętrznego wyposażenia, dzięki czemu urządzenie jest mniej nieporęczne. Ponadto wiele urządzeń z tą funkcją umożliwia wymianę standardowych anten na inne (na przykład mocniejsze lub o bardziej optymalnej charakterystyce promieniowania). Niektóre z tych modeli są nawet początkowo sprzedawane bez anten - z obliczeniem na to, że użytkownik sam je wybierze, według własnego uznania; taki zestaw nie jest potrzebny do użytku domowego, ale może być bardzo wygodny przy doborze profesjonalnego sprzętu wysokiej jakości. Z drugiej strony, wymienna konstrukcja zmniejsza niezawodność mocowania anteny, zwiększa prawdopodobieństwo awarii oraz zwiększa koszt urządzenia. Dlatego większość współczesnych urządzeń Wi-Fi jest nadal wyposażona w niewymienne anteny.

Liczba anten 5 GHz

Łączna liczba anten w routerze odpowiedzialnych za komunikację w paśmie 5 GHz. Aby uzyskać więcej informacji na temat liczby anten, patrz „Łączna liczba anten”, o paśmie - „Pasmo częstotliwości”.

Moc nadajnika

Nominalna moc nadajnika Wi-Fi zastosowanego w urządzeniu. Gdy obsługiwanych jest wiele zakresów (patrz „Zakresy pracy”), moc dla różnych częstotliwości może być różna, w takich przypadkach maksymalna wartość jest podana w tym miejscu.

Całkowita moc nadawcza zapewniana przez urządzenie zależy bezpośrednio od tego parametru. Moc tę można obliczyć dodając moc nadajnika i zysk energetyczny anteny (patrz wyżej): na przykład nadajnik 20 dBm uzupełniony o antenę 5 dBi daje moc 25 dBm (w głównym obszarze zasięgu anteny). Do prostego użytku domowego (na przykład zakup routera do małego mieszkania) takie szczegóły nie są wymagane, ale w dziedzinie zawodowej często konieczne jest użycie urządzeń bezprzewodowych o ściśle określonej mocy. Szczegółowe zalecenia w tej sprawie dla różnych sytuacji można znaleźć w źródłach specjalnych, ale tutaj zauważamy, że łączna wartość 26 dBm lub więcej pozwala zaklasyfikować urządzenie jako sprzęt z silnym nadajnikiem. Jednocześnie takie możliwości nie zawsze są wymagane w praktyce: nadmierna moc może powodować duże zakłócenia zarówno dla otaczających urządzeń, jak i samego nadajnika (szczególnie w warunkach miejskich i innych podobnych warunkach), a także obniżyć jakość połączenia z elektroniką małej mocy. A dla efektywnej komunikacji na duże odległości zarówno sam sprzęt, jak i urządzenia zewnętrzne powinny mieć odpowiednią moc (która nie zawsze jest osiągalna), dlatego przy wyborze nie należy gonić za maks...ymalną liczbą decybeli, ale wziąć pod uwagę zalecenia dla konkretnego przypadku; ponadto wzmacniacz Wi-Fi lub system MESH jest często dobrą alternatywą dla potężnego nadajnika.
Dynamika cen
TP-LINK TL-MR6400 V2 często porównują
TP-LINK Archer MR200 często porównują