Tryb nocny
Polska
Katalog   /   Komputery   /   Sprzęt sieciowy   /   Urządzenia sieciowe

Porównanie Xiaomi Mi WiFi Router 4A Basic Edition vs TP-LINK Archer A2

Dodaj do porównania
Xiaomi Mi WiFi Router 4A Basic Edition
TP-LINK Archer A2
Xiaomi Mi WiFi Router 4A Basic EditionTP-LINK Archer A2
Porównaj ceny 7
od 96 zł
Produkt jest niedostępny
Opinie
1
0
0
1
TOP sprzedawcy
Główne
Dwuzakresowe Wi-Fi. Cztery anteny. Zdalne sterowanie za pomocą aplikacji mobilnej.
Rodzaj urządzeniarouterrouter
Wejście danych (port WAN)
Ethernet (RJ45)
Wi-Fi
Ethernet (RJ45)
Wi-Fi
Połączenie Wi-Fi
Standardy Wi-Fi
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Zakres częstotliwości pracy
2.4 GHz
5 GHz
2.4 GHz
5 GHz
Pasma pracydwuzakresowy (2,4 GHz i 5 GHz)dwuzakresowy (2,4 GHz i 5 GHz)
Maks. prędkość przy 2.4 GHz300 Mb/s300 Mb/s
Maks. prędkość przy 5 GHz867 Mb/s433 Mb/s
Porty
WAN
1 port
100 Mb/s
1 port
100 Mb/s
LAN
2 porty
100 Mb/s
4 porty
100 Mb/s
Antena i nadajnik
Liczba anten Wi-Fi4 szt.3 szt.
Typ antenyzewnętrznazewnętrzna
Zysk energetyczny5 dBi5 dBi
Liczba anten 2.4 GHz2 szt.2 szt.
Liczba anten 5 GHz2 szt.1 szt.
Moc nadajnika19 dBm23 dBm
Moc sygnału 2.4 GHz20 dBm
Moc sygnału 5 GHz23 dBm
Funkcje
Funkcje i możliwości
NAT
tryb mostu
 
zapora sieciowa (Firewall)
NAT
tryb mostu
repeater
zapora sieciowa (Firewall)
Cechy dodatkowe
serwer DHCP
obsługa VPN
obsługa DDNS
obsługa DMZ
serwer DHCP
obsługa VPN
 
 
Bezpieczeństwo
Szyfrowanie
WPA
WEP
WPA2
WPA
WEP
WPA2
Dane ogólne
Wymiary188x175x101 mm357x223x68 mm
Waga380 g
Kolor obudowy
Data dodania do E-Katalogsierpień 2019maj 2019

Maks. prędkość przy 5 GHz

Maksymalna prędkość, obsługiwana przez urządzenie przy łączności bezprzewodowej w paśmie 5 GHz.

Pasmo to jest wykorzystywane w Wi-Fi 4, Wi-Fi 6 i Wi-Fi 6E jako jedno z dostępnych, w Wi-Fi 5 jako jedyne (patrz „Standardy Wi-Fi”). Prędkość maksymalna podawana jest w specyfikacji w celu zaznaczenia rzeczywistych możliwości konkretnego sprzętu - mogą być one zauważalnie skromniejsze od ogólnych możliwości standardu. Poza tym wszystko zależy od generacji Wi-Fi. Na przykład urządzenia obsługujące Wi-Fi 5 mogą teoretycznie przesyłać do 6928 Mb/s (przy użyciu ośmiu anten), a Wi-Fi 6 do 9607 Mb/s (przy użyciu tychże ośmiu strumieni przestrzennych). Maksymalna możliwa prędkość łączności jest osiągana w określonych warunkach i nie każdy model sprzętu Wi-Fi w pełni je spełnia. Konkretne liczby są umownie podzielone na kilka grup: wartość do 500 MB/s jest dość skromna, wiele urządzeń obsługuje prędkości w zakresie 500 - 1000 MB/s, wskaźniki 1 - 2 GB/s można zaliczyć do średnich wartości, a najbardziej zaawansowane modele w swojej klasie zapewniają prędkość wymiany danych na poziomie ponad 2 GB/s.

LAN

LAN w tym przypadku oznacza standardowe złącza sieciowe (znane jako RJ-45) przeznaczone do przewodowego połączenia lokalnych urządzeń sieciowych – komputerów, serwerów, dodatkowych punktów dostępowych itp. Liczba portów odpowiada liczbie urządzeń, do których można bezpośrednio podłączyć sprzęt drogą przewodową.

Pod względem prędkości zdecydowanie najpopularniejsze opcje to 100 Mb/s (Fast Ethernet) i 1 Gb/s (Gigabit Ethernet). Jednocześnie dzięki rozwojowi technologii powstaje coraz więcej urządzeń gigabitowych, choć w praktyce prędkość ta ma krytyczne znaczenie tylko przy przesyłaniu dużej ilości informacji. Jednocześnie niektóre modele, oprócz standardowej szybkości głównych portów LAN, mogą posiadać port LAN 2,5 Gb/s, 5 Gb/s, a nawet 10 Gb/s przy zwiększonej przepustowości.

Liczba anten Wi-Fi

We współczesnym sprzęcie Wi-Fi wskaźnik ten może być różny: oprócz najprostszych urządzeń z 1 anteną, istnieją modele, w których liczba ta wynosi 2, 3, 4, a nawet więcej. Sens stosowania kilku anten tkwi w dwóch szczegółach. Po pierwsze, jeśli na antenę przypada kilka urządzeń zewnętrznych, muszą one dzielić między sobą szerokość pasma, a rzeczywista prędkość łączności dla każdego abonenta odpowiednio spada. Po drugie, taka konstrukcja może być również wymagana przy komunikacji z jednym urządzeniem zewnętrznym - do współpracy z technologią MU-MIMO (patrz poniżej), co pozwala w pełni wykorzystać możliwości nowoczesnych standardów Wi-Fi.

W każdym razie więcej anten oznacza zwykle bardziej zaawansowane i funkcjonalne urządzenie. Z drugiej strony, parametr ten znacząco wpływa na koszt; dlatego sensowne jest poszukiwanie sprzętu z dużą liczbą anten, głównie wtedy, gdy krytyczna jest szybkość i stabilność łączności.

Liczba anten 5 GHz

Łączna liczba anten w routerze odpowiedzialnych za komunikację w paśmie 5 GHz. Aby uzyskać więcej informacji na temat liczby anten, patrz „Łączna liczba anten”, o paśmie - „Pasmo częstotliwości”.

Moc nadajnika

Nominalna moc nadajnika Wi-Fi zastosowanego w urządzeniu. Gdy obsługiwanych jest wiele zakresów (patrz „Zakresy pracy”), moc dla różnych częstotliwości może być różna, w takich przypadkach maksymalna wartość jest podana w tym miejscu.

Całkowita moc nadawcza zapewniana przez urządzenie zależy bezpośrednio od tego parametru. Moc tę można obliczyć dodając moc nadajnika i zysk energetyczny anteny (patrz wyżej): na przykład nadajnik 20 dBm uzupełniony o antenę 5 dBi daje moc 25 dBm (w głównym obszarze zasięgu anteny). Do prostego użytku domowego (na przykład zakup routera do małego mieszkania) takie szczegóły nie są wymagane, ale w dziedzinie zawodowej często konieczne jest użycie urządzeń bezprzewodowych o ściśle określonej mocy. Szczegółowe zalecenia w tej sprawie dla różnych sytuacji można znaleźć w źródłach specjalnych, ale tutaj zauważamy, że łączna wartość 26 dBm lub więcej pozwala zaklasyfikować urządzenie jako sprzęt z silnym nadajnikiem. Jednocześnie takie możliwości nie zawsze są wymagane w praktyce: nadmierna moc może powodować duże zakłócenia zarówno dla otaczających urządzeń, jak i samego nadajnika (szczególnie w warunkach miejskich i innych podobnych warunkach), a także obniżyć jakość połączenia z elektroniką małej mocy. A dla efektywnej komunikacji na duże odległości zarówno sam sprzęt, jak i urządzenia zewnętrzne powinny mieć odpowiednią moc (która nie zawsze jest osiągalna), dlatego przy wyborze nie należy gonić za maks...ymalną liczbą decybeli, ale wziąć pod uwagę zalecenia dla konkretnego przypadku; ponadto wzmacniacz Wi-Fi lub system MESH jest często dobrą alternatywą dla potężnego nadajnika.

Moc sygnału 2.4 GHz

Moc nadajnika zainstalowanego w urządzeniu podczas pracy w paśmie 2,4 GHz (patrz „Zakres częstotliwości”).

Parametr ten ma bezpośredni wpływ na całkowitą moc i odpowiednio na wydajność komunikacji. Aby uzyskać więcej informacji, patrz „Moc nadajnika” powyżej, ale tutaj osobno podkreślamy, że wysoka moc nie zawsze jest wymagana, a w niektórych przypadkach jest wręcz szkodliwa.

Moc sygnału 5 GHz

Moc nadajnika zainstalowanego w urządzeniu podczas pracy w paśmie 5 GHz (patrz „Zakres częstotliwości”).

Parametr ten ma bezpośredni wpływ na całkowitą moc i odpowiednio na wydajność komunikacji. Aby uzyskać więcej informacji, patrz „Moc nadajnika” powyżej, ale tutaj osobno podkreślamy, że wysoka moc nie zawsze jest wymagana, a w niektórych przypadkach jest wręcz szkodliwa.

Funkcje i możliwości

Podstawowe funkcje i możliwości zaimplementowane w urządzeniu.

Ta kategoria obejmuje głównie najważniejsze funkcje — mianowicie równoważenie obciążenia (Dual WAN), rezerwację kanału, Link Aggregation, Bluetooth (różne wersje, w tym Bluetooth v 5), protokół tranmisji danych Zigbee, asystent głosowy, NAT, tryby MESH, mostu, wzmacniacza sygnału, funkcja Beamforming, zapory sieciowej (Firewall) i CLI (Telnet). Oto bardziej szczegółowy opis każdego z tych punktów:

- Dual WAN. Możliwość jednoczesnego podłączenia do dwóch sieci zewnętrznych. Najczęściej służy do jednoczesnej pracy z dwoma podłączeniami internetowymi (choć możliwe są inne warianty); przy tym istnieją dwa podstawowe tryby pracy z takimi podłączeniami— rezerwacja (Failover/Failback) i równoważenie (Load Balance). Tak więc, w trybie rezerwacji urządzenie stale korzysta z głównego kanału połączenia internetowego, a w przypadku awarii na tym kanale automatycznie przełącza się na awaryjne rozwiązanie. W trybie równoważenia oba kanały są używane jednocześnie, przy czym...obciążenie między nimi jest rozdzielane automatycznie (w zależności od zużycia ruchu przez jedno lub drugie urządzenie) lub ręcznie (określono w ustawieniach dla konkretnych urządzeń). Pozwala to, na przykład, oddzielić kanał do gier sieciowych od reszty połączeń, minimalizując opóźnienia i zwiększając wydajność.

- Link Aggregation. Funkcja pozwalająca na połączenie kilku równoległych fizycznych kanałów komunikacyjnych w jeden logiczny - w celu zwiększenia prędkości i niezawodności połączenia. Mówiąc prościej, dzięki Link Aggregation urządzenie można połączyć z innym urządzeniem nie jednym kablem, jednak dwoma lub nawet kilkoma kablami jednocześnie. W tym przypadku wzrost prędkości następuje z powodu sumowania przepustowości wszystkich kanałów fizycznych; jednak ogólna prędkość może być mniejsza niż suma prędkości - z drugiej strony, łączenie kilku stosunkowo wolnych złączy jest często tańsze niż używanie sprzętu z bardziej zaawansowanym pojedynczym interfejsem. Wzrost niezawodności odbywa się, po pierwsze, poprzez rozłożenie całkowitego obciążenia na oddzielne kanały fizyczne, a po drugie, dzięki „gorącej” rezerwacji: awaria jednego portu lub kabla może zmniejszyć prędkość, jednak nie prowadzi do całkowitego zerwania połączenia, a po przywróceniu sprawności kanał włącza się automatycznie.

- Bluetooth. Wsparcie przez urządzenie technologii bezprzewodowej Bluetooth. Znaczenie tej funkcji zależy od formatu urządzenia (patrz „Rodzaj urządzenia”). Na przykład adaptery z tą możliwością pozwalają uzupełnić komputer nie tylko o komunikację Wi-Fi, jednak także o obsługę Bluetooth - dzięki temu można sobie poradzić z jednym adapterem zamiast dwóch. W routerach i punktach dostępowych funkcja ta umożliwia zewnętrznym urządzeniom dostęp do Internetu (lub sieci lokalnej) za pośrednictwem połączenia Bluetooth zamiast Wi-Fi. Ten format pracy pozwala rozładować kanał Wi-Fi i zmniejszyć zużycie energii podłączonych urządzeń; jest to szczególnie ważne w przypadku komponentów inteligentnego domu i innych urządzeń „Internetu Rzeczy”, specyfikacja niektórych routerów/punktów dostępowych jednoznacznie wskazuje, że Bluetooth jest przeznaczony głównie dla takiej elektroniki. Mogą być przewidziane również inne sposoby wykorzystania tej technologii, bardziej szczegółowe; jednak jest to rzadkie.

— Zigbee. Protokół komunikacyjny, przeznaczony dla systemów automatyzacji (w tym inteligentnego domu), systemów alarmowych, sterowania przemysłowego itp. Umożliwia transmisję sygnałów sterujących przy niskich kosztach energii, a także tworzenie sieci MESH z routingiem sygnału przez kilka węzłów i automatycznym wyborem optymalnej trasy z uwzględnieniem aktualnej sytuacji w sieci. Posiada wysoką ochronę kanałów komunikacji przed włamaniami, a także możliwość zapewnienia dużej szybkości uruchomienia.

- Asystent głosowy. Wsparcie przez urządzenie jednego lub drugiego asystenta głosowego. Najczęstsze warianty to (pojedynczo lub razem):
  • Amazon Alexa
  • Asystent Google
Konkretną funkcjonalność tych asystentów można wyjaśnić za pomocą specjalnych źródeł (zwłaszcza, że jest ona stale optymalizowana i rozbudowywana). Tutaj zauważamy, że w przypadku sprzętu Wi-Fi zwykle chodzi nie o asystent wbudowany w samo urządzenie, lecz o poprawioną kompatybilność ze smartfonami i innymi gadżetami, w których zainstalowany jest odpowiedni asystent. Taka funkcjonalność jest szczególnie przydatna, biorąc pod uwagę fakt, że współczesne asystenty głosowe służą m.in. do sterowania elementami inteligentnego domu. Komunikacja z takim sterowaniem często odbywa się właśnie za pośrednictwem domowego routera lub innego podobnego sprzętu, a wsparcie przez taki sprzęt asystentów głosowych znacznie upraszcza konfigurację i rozszerza możliwości całego systemu.

- NAT (Network Address Translation). Funkcja umożliwiająca sprzętowi Wi-Fi podczas pracy z siecią zewnętrzną (na przykład Internetem) zastąpienie adresów IP wszystkich komputerów i innych urządzeń podłączonych do tego sprzętu jednym wspólnym adresem IP. Innymi słowy, sieć z takim routerem widziana jest „z zewnątrz” jako jedno urządzenie, z jednym wspólnym IP. Najpopularniejszym zastosowaniem NAT jest łączenie wielu abonentów z Internetem (na przykład wszystkich komputerów i gadżetów w domu lub biurze) za pośrednictwem jednego konta dostawcy. Jednocześnie liczba takich abonentów w sieci jest ograniczona jedynie możliwościami routera i może być dowolnie zmieniana, nie wpłynie to na dostęp do World Wide Web (podczas gdy bez użycia NAT koniecznie trzeba byłoby zorganizować osobne konto dla każdego urządzenia). Obsługa NAT jest obowiązkową funkcją routerów (patrz „Rodzaj urządzenia”).

- Tryb pomostowy. Możliwość pracy urządzenia w trybie mostu. Tryb ten pozwala na bezprzewodowe łączenie ze sobą poszczególnych segmentów sieci – np. połączenie dwóch pięter, jeśli trudno jest położyć między nimi kabel. Możliwa jest jednak komunikacja na większe odległości – w osobnych, kierunkowych punktach dostępowych (patrz „Rodzaj urządzenia”), stworzonych głównie do takiego zastosowania, zasięg może przekroczyć 20 km. Właściwie ten tryb obsługuje większość punktów dostępowych (zarówno kierunkowych, jak i konwencjonalnych), jednak jest również popularny w innych typach sprzętu, w szczególności routerach.
Warto dodać, że najlepiej używać urządzeń tego samego typu do pracy w trybie pomostowym - gwarantuje to wysoką jakość komunikacji w obu kierunkach. Należy również wspomnieć, że oprócz dwukierunkowego trybu „punkt-punkt” dostępne są również urządzenia obsługujące mosty wielokierunkowe („punkt-wielopunkt”); dostępność takiej możliwości należy wyjaśnić osobno.

- Tryb wzmacniacza. Tryb działania, w którym sprzęt jedynie powtarza sygnał Wi-Fi z innego urządzenia, pełniąc rolę repeatera. Głównym celem tej funkcji jest rozszerzenie sieci Wi-Fi, aby zapewnić dostęp tam, gdzie główne urządzenie (na przykład router) nie może dotrzeć. Klasycznym przykładem repeaterów są wzmacniacze Wi-Fi (patrz „Rodzaj urządzenia”), które z definicji mają ten tryb; jednak można go również znaleźć w innych typach urządzeń Wi-Fi. Wyjątkiem są systemy MESH, które mają podobną specyfikę, jednak różnią się formatem swojej pracy. Aby uzyskać więcej informacji na temat tego formatu, patrz poniżej, jednak tutaj zauważamy, że sieci ze wzmacniaczami są znacznie gorsze od MESH pod względem praktycznych możliwości. Po pierwsze, sygnały z głównego sprzętu i z repeatera są postrzegane jako oddzielne sieci Wi-Fi, a podczas przemieszczania się między nimi urządzenia abonenckie muszą zostać ponownie podłączone; może to nastąpić automatycznie, jednak przerywanie komunikacji i zmiana sieci nadal są niewygodne. Po drugie, praca przez wzmacniacz zauważalnie spowalnia prędkość Wi-Fi. Po trzecie, repeater działa według ściśle określonego, z góry ustalonego schematu routingu. Z drugiej strony, punkty dostępowe z funkcją repeatera są znacznie tańsze niż węzły MESH, a wspomniane wady nie zawsze są krytyczne.

- Tryb MESH. Możliwość pracy urządzenia jako węzła w sieci MESH. Z definicji wszystkie systemy MESH mają tę funkcję, jednak można ją również zapewnić dla innych rodzajów sprzętu. Szczegółowy opis sieci tego typu znajduje się w rozdziale „Rodzaj urządzenia – system MESH”. Tutaj krótko opiszemy ich cechy i różnicę między tym trybem a trybem wzmacniacza (patrz wyżej), który ma w dużej mierze podobny cel.
Technologia MESH pozwala na stworzenie jednej sieci bezprzewodowej przy użyciu wielu oddzielnych węzłów (punktów dostępowych) połączonych ze sobą za pomocą Wi-Fi. W tym przypadku realizowany jest tzw. tryb bezproblemowy działania: cała sieć jest postrzegana jako jedna całość, przełączanie między punktami dostępowymi następuje automatycznie, jeśli to konieczne, w takich przypadkach połączenie nie jest zrywane, a użytkownik nie zauważa przejścia do innego węzła sieci. Jest to jedna z kluczowych różnic w stosunku do używania wzmacniaczy. Kolejną różnicą jest routing dynamiczny: węzły sieci MESH automatycznie określają optymalną ścieżkę sygnału. Z tego powodu, jak również ze względu na pozostałe cechy tej technologii, obecność „pośredników” w torze sygnału prawie nie wpływa na szybkość komunikacji (w przeciwieństwie do tych samych wzmacniaczy). Główną wadą sprzętu z tą funkcją jest stosunkowo wysoki koszt.

- Beamforming. Technologia, która umożliwia wzmocnienie sygnału Wi-Fi w kierunku, w którym znajduje się urządzenie odbiorcze (zamiast rozgłaszania tego sygnału we wszystkich kierunkach lub na dużym obszarze, jak to zwykle bywa). Zawężenie charakterystyki promieniowania pozwala skierować większą moc w stronę odbiornika, zwiększając tym samym zasięg i wydajność komunikacji; w tym przypadku pozycja urządzenia odbiorczego jest ustalana automatycznie, użytkownik nie musi zajmować się dodatkowymi ustawieniami. Wiele modeli urządzeń Wi-Fi jest w stanie wzmacniać sygnał w kilku kierunkach jednocześnie (z reguły przewidziano do tego kilka anten). Przy tym urządzenia abonenckie nie muszą obsługiwać Beamformingu – poprawa komunikacji jest zauważalna nawet przy jednokierunkowym wykorzystaniu tej technologii (choć nie tak wyraźnie, jak przy dwukierunkowym).
Należy również zauważyć, że ujednolicone standardy Beamforming zostały oficjalnie zaimplementowane jako część specyfikacji Wi-Fi 5. Co prawda, wcześniejsze wersje Wi-Fi wykorzystywały „kształtowanie wiązki”, jednak różni producenci stosowali różne metody implementacji Beamforming, które były ze sobą niezgodne. Tak więc obecnie funkcja ta prawie nigdy nie występuje poza sprzętem kompatybilnym z Wi-Fi 5.

- Zapora sieciowa (Firewall). Funkcja umożliwiająca urządzeniu Wi-Fi monitorowanie ruchu przez nie przechodzącego. W rzeczywistości zapora sieciowa to zestaw filtrów programowych: filtry te porównują pakiety danych o określonych parametrach i decydują, czy zezwolić na ruch, czy nie. W takim przypadku przetwarzanie może odbywać się według dwóch zasad: „dozwolone jest wszystko, co nie jest wyraźnie zabronione” lub odwrotnie, „wszystko, co nie jest wyraźnie dozwolone, jest zabronione”. Głównym przeznaczeniem „firewalla” jest ochrona sieci (lub poszczególnych segmentów sieci) przed nieautoryzowanym dostępem i różnymi atakami. Ponadto funkcja ta może służyć do kontrolowania aktywności użytkowników - na przykład zakazu dostępu do niektórych witryn internetowych. Zwróć uwagę, że zapora sieciowa może być zaimplementowana na poziomie poszczególnych urządzeń, jednak jej użycie na routerze pozwala na jednoczesne zabezpieczenie całej sieci.

- CLI (Telnet). Możliwość sterowania urządzeniem za pomocą protokołu Telnet. Jest to jeden z protokołów używanych obecnie do zdalnego sterowania urządzeniami sieciowymi; jednak Telnet, w przeciwieństwie do innych popularnych standardów HTTP, nie posiada interfejsu graficznego i używa tylko wiersza poleceń. Dostęp ten jest wykorzystywany głównie w celach biznesowych - do debugowania i zmiany ustawień w innych protokołach tekstowych (HTTP na stronach internetowych, SMTP i POP3 na serwerach pocztowych itp.); do pracy z Telnet wymagana jest specjalistyczna wiedza.

Cechy dodatkowe

Dodatkowe funkcje i możliwości (głównie programowe) obsługiwane przez urządzenie. Mogą to być, w szczególności serwer DHCP, serwer FTP, serwer internetowy, serwer plików, serwer multimediów (DLNA), serwer wydruku, klient torrent, obsługa VPN, obsługa DDNS oraz obsługa DMZ. Oto bardziej szczegółowy opis tych funkcji:

— Serwer DHCP. Funkcja upraszczająca przydział adresów IP podłączonym do routera urządzeniom abonenckim (lub innym urządzeń Wi-Fi). Nadanie adresu IP jest niezbędne do poprawnego działania w sieciach TCP/IP (a to cały Internet i zdecydowana większość współczesnych sieci LAN). Dzięki DHCP proces ten można w pełni zautomatyzować, znacznie ułatwiając życie zarówno użytkownikom, jak i administratorom. Jednak administrator może również ustawić dodatkowe parametry DHCP - na przykład określić zakres dostępnych adresów IP (aby zapobiec błędom) lub ograniczyć użycie jednego adresu. Jeśli to konieczne, można nawet ręcznie zarejestrować określony adres dla każdego urządzenia w sieci, bez automatycznego dodawania nowych urządzeń - DHCP upraszcza również tę procedurę, ponieważ umożliwia wykonywanie wszystkich operacji na routerze bez zag...łębiania się w ustawienia każdego urządzenia abonenckiego.

— Serwer FTP. Funkcja umożliwiająca korzystanie z urządzenia Wi-Fi do przechowywania plików i uzyskiwania do nich dostępu przez FTP. Ten protokół jest szeroko stosowany do przesyłania pojedynczych plików zarówno w sieciach lokalnych, jak i przez Internet. Właściwie jedną z głównych różnic między tą funkcją a serwerem plików (patrz poniżej) jest przede wszystkim możliwość bezproblemowej pracy przez Internet. Ponadto FTP jest popularnym protokołem standardowym i jest obsługiwany przez prawie każdy komputer, podczas gdy serwer plików może korzystać ze specjalistycznych standardów. Jeśli więc planujesz zorganizować przechowywanie plików z najprostszym i najwygodniejszym dostępem, warto wybrać urządzenie z tą funkcją. Należy zaznaczyć, że „proste” nie oznacza „niekontrolowane”: FTP umożliwia ustawienie loginu i hasła dostępu do plików, a także szyfrowanie przesyłanych danych. Same pliki mogą być przechowywane zarówno na wbudowanej pamięci urządzenia sieciowego, jak i na podłączonym do niego nośniku, takim jak pendrive lub zewnętrzny dysk twardy.

— Serwer internetowy. Możliwość wykorzystania routera jako serwera internetowego - magazynu, na którym znajduje się (jest „hostowana”) strona internetowa. Należy pamiętać, że może to być zarówno witryna internetowa, jak i zasoby wewnętrzne sieci lokalnej, przeznaczone wyłącznie do użytku osobistego lub służbowego. Umieszczenie strony na własnym sprzęcie pozwala na obejście się bez usług dostawców hostingu i zachowanie maksymalnej kontroli nad danymi na stronie oraz jej bazą techniczną. Z drugiej strony, funkcja ta znacząco wpływa na koszt sprzętu, a pod względem pamięci i mocy obliczeniowej urządzenia Wi-Fi często ustępują serwerom dedykowanym, nawet opartym na zwykłych komputerach stacjonarnych i laptopach (choć w niektórych modelach pamięć może być rozbudowana o dysk zewnętrzny). Dlatego w tym przypadku tryb serwera internetowego należy traktować głównie jako dodatkową opcję dla stosunkowo prostych zadań, które nie są związane z dużymi obciążeniami.

— Serwer plików. Możliwość wykorzystania urządzenia Wi-Fi jako serwera do przechowywania plików. Funkcja ta różni się od powyższego serwera FTP stosowanymi protokołami przesyłania danych; innymi słowy, „serwer plików” w tym przypadku jest sieciowym magazynem plików opartym na dowolnych protokołach z wyjątkiem FTP. Konkretny zestaw takich protokołów, a co za tym idzie, funkcjonalność urządzenia Wi-Fi należy wyjaśniać osobno; zwracamy tylko uwagę, że najczęściej chodzi o dostęp do plików przez sieć lokalną (do dostępu do Internetu tradycyjnie jest używany FTP), a same pliki mogą być przechowywane zarówno we własnej pamięci routera, jak i na dysku flash USB lub zewnętrznym dysku twardym.

— Serwer multimediów (DLNA). Możliwość tworzenia biblioteki multimediów za pomocą zewnętrznego dysku USB i przesyłania z niego treści do innych urządzeń w sieci domowej za pomocą kabla lub Wi-Fi. Funkcja ta jest najbardziej pożądana w przypadku transmisji wideo, plików audio i obrazów do telewizorów Smart TV i dekoderów. Ogólnie rzecz biorąc, technologia została pomyślana tak, aby możliwe było łączenie różnych urządzeń w jedną sieć i łatwa wymiana treści w tej sieci, niezależnie od modelu i producenta poszczególnych urządzeń. Wiele nowoczesnych smartfonów i tabletów, urządzeń ekosystemu inteligentnego domu itp. obsługuje DLNA.

— Serwer wydruku. Możliwość obsługi urządzenia jako serwera wydruku - komputera sterującego drukarką. Funkcja ta pozwala zamienić zwykłą drukarkę na drukarkę sieciową: wszyscy użytkownicy sieci będą mogli wysyłać zadania drukowania przez serwer wydruku, a taki serwer będzie również zapewniał szereg dodatkowych funkcji. Tak więc wysłane zadania będą na nim przechowywane, dopóki nie zostaną ukończone lub anulowane, niezależnie od tego, czy komputer, z którego zostały wysłane, jest włączony; można przewidzieć zdalne sterowanie kolejką wydruku itp. A użycie routera (lub innego podobnego urządzenia) w tej roli jest wygodne, ponieważ router z reguły jest włączony i dostępny przez cały czas.

— Klient sieci torrent. Obecność w urządzeniu własnego klienta sieci torrent lub innego protokołu wymiany danych (HTTP, FTP itp.). Funkcja ta umożliwia pracę z sieciami wymiany plików, które są zbudowane na zasadzie „każdy jest serwerem i klientem”: pobrane informacje znajdują się nie na osobnym komputerze w sieci, lecz na komputerach tych samych użytkowników. Przy tym ten sam plik można otworzyć do pobrania w kilku miejscach, a klient torrent pobiera różne jego części z różnych źródeł jednocześnie - to znacznie zwiększa prędkość. Korzystanie z klienta torrent na urządzeniu jest wygodne z dwóch powodów. Po pierwsze, pozwala odciążyć podstawowe komputery użytkowników - to ważna zaleta, biorąc pod uwagę, że klient torrent może zużywać dużo zasobów, zwłaszcza przy dużej liczbie jednoczesnych pobrań/udostępnień. Po drugie, urządzenia sieciowe zwykle pozostają włączone przez cały czas, umożliwiając kontynuowanie pobierania i wysyłania danych nawet wtedy, gdy komputery i laptopy użytkowników są wyłączone. Należy jednak wziąć pod uwagę, że pomimo obecności takiej funkcjonalności w urządzeniach, otwarte zamieszczanie treści w sieciach torrentowych może naruszać prawa autorskie. Dlatego używaj klientów torrent zgodnie z przepisami prawa.

— Obsługa VPN (Virtual Private Network). Początkowo VPN to funkcja, która umożliwia łączenie urządzeń fizycznie znajdujących się w różnych sieciach w jedną sieć wirtualną. Połączenie jest nawiązywane przez Internet, ale dane są szyfrowane, aby zapobiec nieautoryzowanemu dostępowi do nich. Jednak routery, punkty dostępowe i sprzęt MESH (patrz „Typ urządzenia”) często wykorzystują nieco inny format pracy: łączenie się z Internetem przez oddzielny serwer VPN, dzięki czemu cały ruch zewnętrzny z sieci obsługiwanej przez router przechodzi przez ten serwer. To połączenie ma wiele zalet. Po pierwsze, dodatkowe szyfrowanie ruchu zwiększa bezpieczeństwo pracy. Po drugie, „na zewnątrz” w takich przypadkach to nie rzeczywisty adres IP użytkownika jest widoczny, ale adres serwera VPN, a w ustawieniach można ustawić adres odnoszący się do prawie każdego kraju na świecie. Ma to również pozytywny wpływ na bezpieczeństwo, a także umożliwia ominięcie regionalnych ograniczeń dotyczących odwiedzania niektórych witryn i dostępu do usług.
Zwróć uwagę, że VPN można zapewnić również na poszczególnych urządzeniach w sieci (na przykład za pomocą narzędzi w niektórych przeglądarkach internetowych); jednak router VPN umożliwia wszystkim urządzeniom sieciowym pracę w tym formacie, niezależnie od tego, czy obsługują one VPN, czy nie. Jest to szczególnie wygodne w szczególności na telewizorach Smart TV (w celu uzyskania dostępu do niektórych usług wideo, takich jak Netflix) oraz na konsolach PS i Xbox (w celu obejścia regionalnych ograniczeń w niektórych grach). Z drugiej strony, należy mieć na uwadze, że ustanowienie takiego połączenia na routerze może być dość trudne, prędkość połączenia podczas pracy przez VPN może znacznie spaść, a włączenie i wyłączenie tej funkcji na routerze jest zwykle trudniejsze niż na urządzeniach użytkowników.

— DDNS. Urządzenie obsługuje funkcję DDNS - przypisanie stałej nazwy domeny do urządzenia ze zmieniającym się (dynamicznym) adresem IP. Dla elektroniki sieciowej kluczowy jest adres IP, to on pozwala sprzętowi na wysyłanie pakietów danych dokładnie do żądanego urządzenia. Jednak takie adresy są sekwencjami liczb, które są słabo zapamiętywane przez ludzi. W związku z tym pojawiły się nazwy domen - w Internecie są to adresy internetowe (np. ek.ua lub e-katalog.ru), w sieci lokalnej - nazwy poszczególnych urządzeń (np. „Laptop roboczy” czy „Komputer Sergiusza"). Zarówno w Internecie, jak i w sieciach lokalnych za połączenie między nazwą domeny a adresem IP odpowiada tzw. serwery DNS: dla każdej domeny rejestrowany jest własny adres IP w bazie danych takiego serwera. Jednak ze względów technicznych często zdarzają się sytuacje, gdy router musi używać dynamicznego (zmiennego) adresu IP; w związku z tym, aby informacje były stale dostępne dla tej samej nazwy domeny, konieczna jest aktualizacja danych na serwerze DNS przy każdej zmianie adresu IP. Dokładnie to zapewnia funkcja DDNS.

— DMZ. Początkowo DMZ to funkcja, która pozwala na stworzenie w sieci lokalnej segmentu z wolnym dostępem z zewnątrz. Od reszty sieci ten segment (nazywany DMZ - „strefa zdemilitaryzowana”) jest oddzielony zaporą sieciową, która dopuszcza tylko specjalnie dozwolony ruch zewnętrzny. Zapewnia to dodatkową ochronę przed atakami z zewnątrz: w takich przypadkach cierpi przede wszystkim strefa zdemilitaryzowana, dostęp atakującego do pozostałych zasobów sieciowych jest znacznie utrudniony. Jednym z najpopularniejszych sposobów wykorzystania tej funkcji jest organizacja dostępu do usług internetowych, których serwery fizycznie znajdują się we wspólnej sieci lokalnej firmy. Warto jednak zaznaczyć, że w niektórych niedrogich routerach DMZ może oznaczać tryb DMZ-host, który nie zapewnia żadnej dodatkowej ochrony i jest wykorzystywany do zupełnie innych celów (głównie do rozgłaszania wszystkich portów do innego urządzenia sieciowego). Więc konkretny format DMZ warto wyjaśnić osobno, zwłaszcza jeśli kupujesz urządzenie z niższej półki cenowej.
Dynamika cen
Xiaomi Mi WiFi Router 4A Basic Edition często porównują
TP-LINK Archer A2 często porównują