Polska
Katalog   /   Sprzęt i narzędzia ogrodnicze   /   Narzędzia i warsztat   /   Spawarki i przecinarki

Porównanie Tesla Weld MIG/MAG/MMA 285 vs Tesla Weld MMA 255

Dodaj do porównania
Tesla Weld MIG/MAG/MMA 285
Tesla Weld MMA 255
Tesla Weld MIG/MAG/MMA 285Tesla Weld MMA 255
od 843 zł
Produkt jest niedostępny
od 200 zł
Produkt jest niedostępny
TOP sprzedawcy
Główne
Walizka w zestawie
Rodzajinwerterowy półautomat spawalniczyinwerterowa
Metody spawania
MMA
MIG/MAG
MMA
 
Specyfikacja
Prąd spawaniastałystały
Napięcie wejściowe230 V230 V
Pobór mocy3.2 kW3 kW
Częstotliwość przełączania80 %60 %
Maks. średnica elektrody3 mm3 mm
Min. średnica drutu0.6 mm
Maks. średnica drutu1 mm
Cechy dodatkowe
 
 
wyświetlacz cyfrowy
funkcja Hot Start
funkcja Anti-Stick
wyświetlacz cyfrowy
Umiejscowienie szpuliwewnątrz
Uchwyt spawalniczy (MIG/MAG)odłączany
Dane ogólne
Długość przewodu uchwytu elektrodowego2 m
Przewód masowy2 m2 m
Długość uchwytu spawalniczego2.5 m
Walizka (torba) w zestawie
Waga12.7 kg3 kg
Data dodania do E-Katalogluty 2016maj 2014

Rodzaj

Rodzaj spawarki określa cechy jej konstrukcji i przeznaczenia.

- Transformator. Najprostsza odmiana jednostek spawalniczych. Zasada działania w tym przypadku jest następująca: napięcie sieciowe wchodzące na wejście jest podawane bezpośrednio na uzwojenie transformatora, co obniża je do napięcia bez obciążenia (patrz niżej). Oprócz prądu przemiennego transformatory mogą spawać przy prądzie stałym - w takich modelach zwykle stosuje się najprostsza prostownica ze stabilizatorem; przy użyciu tego samego prądu przemiennego jego częstotliwość pozostaje taka sama jak w sieci. Główne zalety transformatorów to wysoka niezawodność połączona z niskim kosztem i prostą konstrukcją. Jednocześnie funkcjonalność takich urządzeń jest dość ograniczona - w szczególności z dostępnych rodzajów spawania rzadko występują inne rodzaje spawania, aniżeli ręczne spawanie łukowe (patrz „Rodzaj spawania”); a jakość pracy jest stosunkowo niska ze względu na niestabilność prądu dostarczanego do elektrody. W dodatku waga transformatorów w porównaniu z falownikami jest dość duża. Generalnie ten rodzaj spawarki przeznaczony jest głównie do prostych prac, niewymagających dużej precyzji.

- Falownik. Rodzaj spawarki zaprojektowanej w celu wyeliminowania niektórych istotnych wad transformatorów - w szczególności dużej wagi i nierównego szwu. Kluczowa różnica w stosunku do transformatorów polega na tym, że prąd jest dostarc...zany do uzwojenia transformatora obniżającego napięcie nie bezpośrednio z sieci, lecz przez specjalne obwody sterujące (które w rzeczywistości są falownikiem w wąskim znaczeniu tego słowa). Po przejściu przez te obwody prąd jest najpierw zamieniany na stały, a następnie z powrotem na przemienny, lecz ze zwiększoną częstotliwością - rzędu kilkudziesięciu kiloherców (dla porównania częstotliwość domowego prądu przemiennego wynosi 50 Hz), ten prąd o wysokiej częstotliwości z kolei jest dostarczany do uzwojenia. Umożliwiło to znaczne zmniejszenie wymiarów cewek transformatora, a tym samym zmniejszenie masy i gabarytów całego urządzenia – wiele falowników można bezpiecznie nosić na pasku na ramię. Wysoka częstotliwość zapewnia znacznie stabilniejszy łuk i wysokiej jakości szew zarówno podczas spawania prądem przemiennym, jak i prądem stałym (więcej szczegółów w rozdziale „Prąd spawania”). Ponadto schemat ten pozwala na zastosowanie prawie wszystkich nowoczesnych rodzajów spawania (patrz poniżej). Wśród wad urządzeń falownikowych można wyróżnić wysoki koszt co wynika ze złożoności konstrukcji. Jeśli jednak potrzebujesz urządzenia do wysokiej jakości profesjonalnego spawania, nie sposób się obejść bez falownika.

- Urządzenie półautomatyczne. Termin ten odnosi się do odmiany transformatorów spawalniczych (patrz wyżej), w których proces spawania jest częściowo zautomatyzowany. Elektroda do urządzenia półautomatycznego ma postać cienkiego drutu (zwykle nie grubszego niż 1,2 mm) nawiniętego na cewkę; podczas pracy drut ten jest podawany do dyszy automatycznie, w miarę zużycia. Jest to o wiele wygodniejsze od konwencjonalnego spawania - w końcu operator nie musi sam kontrolować długości elektrody i regulować jej ręcznie, samą elektrodę trzeba wymieniać znacznie rzadziej, są też inne zalety spawania półautomatycznego (więcej szczegółów patrz "Rodzaj spawania"). Co do reszty, urządzenia półautomatyczne są całkowicie podobne do konwencjonalnych transformatorów.

- Falownik półautomatyczny. Jak sama nazwa wskazuje, kategoria ta obejmuje maszyny typu falownikowego z systemem podawania elektrod typowym dla maszyn półautomatycznych. Aby uzyskać więcej informacji, zobacz odpowiednie punkty powyżej, należy zauważyć, że tę odmianę można nazwać najbardziej zaawansowaną wśród nowoczesnych jednostek spawalniczych ogólnego przeznaczenia.

Metody spawania

Do podstawowych rodzajów spawania należą: ręczne łukowe (MMA), półautomatyczne (MIG/MAG), argonowe (TIG), punktowe (SPOT), punktowe (STUD) oraz plazmowe (PLASMA).

- Ręczne łukowe (MMA). Spawanie łukiem elektrycznym i elektrodą topliwą ze specjalną powłoką. Podawanie i przesuwanie elektrody jest wykonywane przez spawacza ręcznie. Nie przewidziano doprowadzenia gazu osłonowego, ochronę jeziorka spawalniczego przed powietrzem można przeprowadzić dzięki spalaniu powłoki nałożonej na elektrodę. Ta technologia spawania pozwala na zastosowanie najprostszego sprzętu, jest niewymagająca do jakości prądu i konstrukcji spawarki. Z drugiej strony jakość uzyskanej spoiny silnie zależy od umiejętności spawacza, wydajność procesu jest stosunkowo niska, a technologia ta jest słabo przystosowana do metali nieżelaznych - jej głównym celem jest spawanie stali i żeliwa .

- Półautomatyczne (MIG/MAG). Częściowo zautomatyzowane spawanie gazem obojętnym (MIG) lub aktywnym (MAG). Gaz dostaje się bezpośrednio do miejsca spawania przez palnik, a gdy łuk się pali, tworzy powłokę ochronną, która osłania jeziorko spawalnicze przed działaniem powietrza. A termin „półautomatyczne” oznacza, że materiał wypełniający w postaci cienkiego drutu jest automatycznie dostarczany do miejsca pr...acy (ale trzeba ręcznie przesunąć palnik). Wybór między gazem obojętnym a aktywnym dokonywany jest w zależności od materiałów, które mają być spawane – na przykład pierwszy wariant jest zwykle stosowany do metali nieżelaznych, drugi do stali. Takie spawanie zapewnia znacznie lepszą jakość spoin niż spawanie ręczne, a także zwiększa wygodę i szybkość pracy.

- Łuk argonowy (TIG). Spawanie ręczne elektrodą nietopliwą w środowisku gazu obojętnego. Przy takim spawaniu łuk elektryczny topi tylko krawędzie łączonych części, a z nich powstaje ostateczny szew, bez użycia materiału elektrody (w niektórych przypadkach mogą być wykorzystywane dodatki w postaci kawałków metalu o odpowiednim kształcie). Aby chronić szew przed działaniem powietrza, do nagrzewanego miejsca dostarczany jest gaz ochronny, zwykle argon. Spawanie TIG doskonale nadaje się do stali nierdzewnej oraz stopów miedzi i aluminium. Pozwala stworzyć dokładniejszy szew niż przy użyciu MMA i zapewnia bardziej precyzyjną kontrolę procesu. Z drugiej strony technologia ta jest dość wymagająca pod względem umiejętności spawacza, a szybkość pracy jest stosunkowo niska.

- Punktowe (SPOT). Spawanie elektryczne, wykonywane dzięki punktowemu działaniu wysokich prądów. Służy do łączenia cienkich blach (głównie do 3 mm), a także do mocowania kołków i szpilek do płaskiej podstawy. Podczas łączenia blach dwie elektrody o stosunkowo małej średnicy dociskają detale ciasno do siebie, po czym przepływa przez nie prąd rzędu kilku kiloamperów; metal w miejscu styku jest podgrzewany do temperatury topnienia, co zapewnia połączenie. Podczas mocowania kołków i szpilek sama szpilka pełni rolę jednej z elektrod, a płaska podstawa pełni rolę drugiej elektrody. Spawanie typu SPOT jest bardzo popularne w produkcji samochodów i serwisie samochodowym: w ten sposób łączy się niektóre elementy karoserii, a także takie spawanie sprawdza się przy prostowaniu. Występują jednostronne oraz dwustronne. Pierwsza wykorzystuje jedną elektrodę, która jest dociskana siłą do przedmiotu obrabianego. Główną zaletą tej odmiany jest możliwość pracy z powierzchniami dostępnymi tylko z jednej strony - np. drzwiami samochodowymi. Właściwie jednym z głównych obszarów zastosowania jednostronnego spawania SPOT jest serwis samochodowy, w szczególności prostowanie karoserii i innych powierzchni samochodowych. Z kolei spawanie (dwustronne) polega na użyciu pary elektrod, ściskających miejsce połączenia z obu stron, jak imadło. Ten wariant lepiej nadaje się do pracy z grubymi elementami lub tam, gdzie wymagana jest wysoka niezawodność połączenia - dzięki opisanemu ściskaniu łatwiej jest zapewnić wymaganą głębokość jeziorka spawalniczego. Z drugiej strony, aby go użyć, niezbędny jest dostęp do obu stron przedmiotu obrabianego. Zwróć uwagę, że niektóre modele spawarek mogą działać zgodnie z jednym ze schematów; to sprawia, że ​​urządzenie jest bardzo wszechstronne, lecz może rzutować na jego cenę.

- Punktowe (STUD). Technologia spawania punktowego z wykorzystaniem łuku podnoszącego (ciągnącego). Jest stosowana głównie do połączeń typu płaska podstawa + kołek. Sam proces spawania przebiega w następujący sposób: kołek dociskany jest do podstawy; prąd się włącza; kołek podnosi się; między nim a podstawą zapala się łuk, który topi powierzchnię podstawy; kołek jest opuszczany do stopu; prąd jest wyłączany, metal krzepnie. Spawanie STUD polega na zastosowaniu zmechanizowanych uchwytów spawalniczych ze sprężyną lub systemem hydraulicznym do podnoszenia i opuszczania kołka, a gaz obojętny lub topnik służy do ochrony połączenia przed powietrzem atmosferycznym.

- Cięcie plazmowe (PLAZMA). Cięcie metalu strumieniem nagrzanej plazmy - silnie zjonizowanego gazu. W tym celu do miejsca pracy dostarczany jest gaz (obojętny lub aktywny), który pod wpływem łuku elektrycznego jest jonizowany, podgrzewany i przyspieszany. Temperatura plazmy może przekraczać 10 000 °C, a prędkość - 1000 m/s, co umożliwia pracę z prawie wszystkimi metalami i stopami, w tym ogniotrwałymi. Przy tym, cięcie jest szybkie, a nacięcie jest czyste i estetyczne, a jego głębokość może wynosić do 200 mm. Główną wadą cięcia plazmowego jest wysoki koszt sprzętu.

Pobór mocy

Maksymalna moc pobierana przez spawarkę podczas pracy, wyrażona w kilowatach (kW), czyli tysiącach W. Ponadto można użyć oznaczenia w kilowoltoamperach (kVA), patrz poniżej.

Im wyższy pobór mocy, tym większy prąd może dostarczyć jednostka i tym lepiej nadaje się ona do pracy z grubymi częściami. Dla różnych materiałów o różnych grubościach istnieją zalecenia dotyczące natężenia prądu, można je znaleźć w specjalistycznych źródłach. Znając te zalecenia i napięcie w obwodzie otwartym (patrz poniżej) dla wybranego rodzaju spawania, możesz użyć specjalnych formuł do obliczenia minimalnej wymaganej mocy spawarki. Należy również pamiętać, że duża moc powoduje odpowiednie obciążenie okablowania i może wymagać podłączenia bezpośrednio do tablicy rozdzielczej.

Jeśli chodzi o różnicę między watami i woltamperami, fizyczne znaczenie obu jednostek jest podobne - prąd pomnożony przez napięcie. Jednak reprezentują one różne parametry. W woltamperach wskazuje się całkowite pobór mocy - zarówno aktywne (przeznaczane na pracę i nagrzewanie poszczególnych części), jak i bierne (przeznaczane na straty w cewkach i kondensatorach). Wygodniej jest użyć tej wartości do obliczenia obciążenia sieci energetycznej. W watach rejestrowana jest tylko moc czynna, przy użyciu tych liczb wygodnie jest obliczyć praktyczne możliwości spawarki.

Częstotliwość przełączania

Częstotliwość przełączania dopuszczalna dla spawarki.

Prawie wszystkie nowoczesne spawarki wymagają przerw w pracy – na chłodzenie i ogólną „regenerację”. Częstotliwość przełączania wskazuje, jaki procent całkowitego cyklu pracy można wykorzystać bezpośrednio do pracy. W danym przypadku standardowy cykl trwa zwykle 10 minut. Na przykład urządzenie o częstotliwości przełączania30% będzie mogło pracować nieprzerwanie przez nie więcej niż 3 minuty, po czym będzie potrzebowało co najmniej 7 minut przerwy. Jednak niektóre modele używają cyklu 5-minutowego; te niuanse należy wyjaśnić sięgając do instrukcji.

Ogólnie rzecz biorąc, wysoka częstotliwość jest wymagana głównie do pracy zawodowej o dużej objętości; przy stosunkowo prostym używaniu parametr ten nie odgrywa decydującej roli, zwłaszcza że w trakcie pracy i tak trzeba robić przerwy. Pod względem konkretnych wartości, wspomniane 30% to bardzo skromna liczba, typowa głównie dla urządzeń klasy podstawowej. Niską jest również wartość 30-50%; najnowocześniejsze urządzenia mieszczą się w przedziale 50 - 70%, a najbardziej "wytrzymałe" modele zapewniają częstotliwość ponad 70%.

Min. średnica drutu

Minimalna średnica drutu elektrodowego, z jaką może sobie poradzić aparat.

Elektrody drutowe są stosowane w modelach półautomatycznych (patrz Typ), przeważnie do spawania MIG/MAG (patrz "Rodzaj spawania"). Im cieńsza elektroda, tym lepiej nadaje się ona do delikatnych prac, gdzie wymagana jest niewielka grubość i szerokość szwu. Szczegółowe zalecenia dotyczące średnicy drutu do konkretnego zadania można znaleźć w specjalnych źródłach.

Maks. średnica drutu

Maksymalna średnica drutu elektrodowego, z jaką może pracować aparat.

Elektrody drutowe są stosowane w modelach półautomatycznych (patrz Typ), przeważnie do spawania MIG/MAG (patrz "Rodzaj spawania"). Konkretne zalecenia dotyczące średnicy drutu do konkretnego zadania można znaleźć w specjalnych źródłach, lecz tutaj zauważamy, że duża grubość elektrody jest ważna w przypadku grubszych prac, które wymagają grubego szwu i dużej ilości materiału. Ogólnie drut jest zauważalnie cieńszy niż tradycyjne elektrody. Za standardowy wariant uważa się tutaj maksymalną średnicę 1 mm, mniejsze wartości ( 0,8 mm i 0,9 mm) spotyka się głównie w urządzeniach małej mocy do prac delikatnych, a w 2 mm lub więcej - wręcz przeciwnie, w wydajnych i zaawansowanych jednostkach.

Cechy dodatkowe

- Gorący start (Hot Start). Funkcja ułatwiająca zajarzenie łuku: gdy elektroda dotknie miejsca spawania, prąd spawania na krótko wzrasta, a po przejściu spawarki w tryb wraca do parametrów standardowych.

- Regulacja dynamiki łuku (Arc Force). Spawarki z tą funkcją są w stanie zwiększyć prąd spawania przy krytycznym zmniejszeniem odległości między elektrodą a spawanymi częściami. Zwiększa to szybkość topienia elektrody i głębokość jeziorka spawalniczego, co zapobiega przywieraniu.

- Ochrona przed przywieraniem (Anti-Stick). W danym przypadku chodzi o środek ochronny na wypadek, gdyby nie udało się uniknąć przywierania elektrody: automatyzacja spawarki znacznie zmniejsza prąd spawania (lub całkowicie go wyłącza), co ułatwia odłączenie elektrody, a poza tym - pozwala uniknąć niepotrzebnego zużycia energii i przegrzewania urządzenia.

- Zmniejszenie napięcia x. x. (VRD) . Funkcja ta służy do znacznego zmniejszenia napięcia obwodu otwartego aparatu. Gdy VRD jest włączone, na otwarte elektrody nie jest dostarczane standardowe napięcie kilkudziesięciu lub nawet setek woltów, lecz tylko 9 - 12 V. W takim przypadku parametry pracy są przywracane automatycznie - gdy elektroda dotyka przedmiotu obrabianego i występuje wysoki prąd; a po zgaszeniu łuku napięcie ponownie spada do wartości minimalnych. Ten rodzaj pracy ma...dwie główne zalety. Po pierwsze zapewnia dodatkowe bezpieczeństwo: w szczególności zamknięcie styków dłonią lub inną częścią ciała nie prowadzi do poważnego porażenia prądem, a także zmniejsza się ryzyko takiego zranienia w warunkach dużej wilgotności. Po drugie, obniżone napięcie pomaga oszczędzać energię.

- Spawanie impulsowe. Przez to rozumie się spawanie łukowe w środowisku gazu osłonowego (MIG/MAG lub TIG), przeprowadzane w tzw. trybie impulsowym. Przy takim formacie pracy główny prąd spawania, stosunkowo niski, jest uzupełniany impulsami o dużej sile (7-10 razy wyższej niż prąd tła), które następują z częstotliwością kilkudziesięciu na sekundę. Istnieją również różne modyfikacje trybu impulsowego, z bardziej złożoną kontrolą prądu; jednak podstawowa zasada pozostaje taka sama. W każdym razie zalety spawania pulsacyjnego to równomierność samego łuku i powstałej spoiny, a także poprawa ogólnej jakości połączenia: impulsy przyczyniają się do mieszania metalu w jeziorku spawalniczym i eliminacji porów, tlenków i innych defektów. Wada tej funkcji jest tradycyjna - zwiększenie kosztu spawarek.

Tryb 2/4-takt. Możliwość wyboru trybu sterowania urządzeniem - dwutaktowy lub czterotaktowy. Pozwala to dodatkowo dopasować sterowanie do specyfiki sytuacji. Przypomnijmy, że w trybie 2 takt urządzenie działa tak długo, jak przycisk jest wciśnięty, a po zwolnieniu wyłącza się; jest to szczególnie wygodne w przypadku krótkich szwów i innych podobnych zadań, gdy spawanie nie musi być włączone przez długi czas. Z kolei przy czterotaktowym formacie sterowania pierwsze naciśnięcie włącza spawanie, drugie go wyłącza. Ta metoda może być niezastąpiona przy długotrwałej pracy, kiedy przytrzymanie wciśniętego przycisku byłoby uciążliwe.

- Sterowanie synergiczne . Funkcja używana głównie podczas pracy w trybie impulsowym opisanym powyżej. Sterowanie synergiczne można również nazwać „inteligentnym”: odbywa się za pomocą wbudowanych mikrokontrolerów elektronicznych, które sterują większością ustawień i w razie potrzeby automatycznie je zmieniają. W praktyce wygląda to tak: wystarczy spawaczowi ustawić szereg danych wejściowych (rodzaj i grubość materiału, skład gazu osłonowego, grubość drutu itp.) i na tej podstawie urządzenie automatycznie dobierze optymalne parametry robocze (napięcie wyjściowe, konfiguracja impulsów, prędkość podawania drutu itp.). Ponadto, jeśli w trakcie pracy zmieni się jeden z parametrów wejściowych, odpowiednio zmienią się pozostałe wartości.
Sterowanie synergiczne znacznie upraszcza pracę z urządzeniem i jednocześnie poprawia jej jakość, zmniejszając prawdopodobieństwo przepalenia i inne poważne błędy. Jest to szczególnie przydatne dla niedoświadczonych spawaczy, którzy nie są przyzwyczajeni do całkowicie ręcznych ustawień parametrów; jednak nawet profesjonaliści doceniają prostotę i szybkość regulacji tkwiącą w modelach synergicznych. Główną wadą tej funkcji jest to, że znacząco wpływa ona na koszt.

- Cyfrowy wyświetlacz. Obecność własnego wyświetlacza w konstrukcji spawarki. Jest to z reguły najprostszy wyświetlacz segmentowy, przeznaczony do wyświetlania 2 - 3 cyfr i niektórych znaków specjalnych. Jednak nawet takie ekrany są bardziej informacyjne niż światło i inne podobne sygnały: mogą one wyświetlać różnorodne dane (napięcie wejściowe i robocze, czas przed wyłączeniem „na odpoczynek”, kody błędów itp.). A przewagą nad czujnikami zegarowymi są małe rozmiary i uniwersalność - ekran może wyświetlać różne rodzaje informacji. Dzięki temu funkcja ta może znacznie uprościć pracę ze spawarką.

- Złącze zdalnego sterowania . Złącze do podłączenia pilota do urządzenia. W zależności od modelu, może chodzi zarówno o tradycyjne piloty ręczne, jak i o pedałach nożnych. W każdym razie takie akcesorium zapewnia dodatkową wygodę w niektórych sytuacjach – w szczególności umożliwia włączanie i wyłączanie zasilania, a nawet zmianę poszczególnych parametrów pracy bez każdorazowego podchodzenia do urządzenia. Co prawda, ​​najczęściej spawarki są dostarczane bez pilota - daje to jednak pewne korzyści: możesz wybrać takie akcesorium według własnego uznania (najważniejsze jest upewnienie się o kompatybilności).

- Chłodzenie cieczą. Obecność układu chłodzenia cieczą w komplecie ze spawarką. Takie chłodzenie jest bardziej skuteczne niż chłodzenie powietrzem, intensywnie usuwa ciepło z "wnętrza” aparatu, palnika i pozwala osiągnąć bardzo wysoką częstotliwość przełączania (patrz wyżej) - do 100%, przy czym przy prądach 200 A i więcej. Jego wady to: złożoność, wysoki koszt, nieporęczność i znaczna waga. W świetle tych ostatnich, jednostki do chłodzenia cieczą są często wykonywane oddzielnie od samych spawarek i mogą być podłączane/odłączane w zależności od tego, co jest w danej chwili ważniejsze – efektywne chłodzenie lub mobilność. Zwracamy również uwagę, że w przypadku dużej liczby modeli producent zaleca stosowanie specjalistycznych płynów chłodzących, a często nie są one dostarczane w komplecie.

- Wbudowany kompresor . Kompresor dopływu powietrza wbudowany bezpośrednio w urządzenie. Funkcja ta występuje wyłącznie w modelach pracujących w trybie PLASMA. Przypomnijmy, że ten tryb polega na cięciu metalu silnym strumieniem mocno nagrzanego i zjonizowanego powietrza; do wytworzenia wymaganego ciśnienia potrzebny jest kompresor. Może być również zewnętrzny; jednak wbudowany kompresor pozwala nie tylko nosić przy sobie cały niezbędny sprzęt przez cały czas, lecz także zmniejszyć wymiary tego sprzętu. Dodatkowo przy takim sprzęcie nie trzeba martwić się o kompatybilność urządzenia i systemu nawiewu. Wady modeli z wbudowanymi kompresorami obejmują zwiększony koszt, a także wymiary i wagę całej obudowy.

- Rozruch silnika samochodu. Możliwość wykorzystania urządzenia do uruchomienia silnika samochodowego, czyli do zasilania rozrusznika. Innymi słowy, modele z tą funkcją mogą również pracować w trybie urządzenia rozruchowego. Taka możliwość przyda się, jeśli standardowy akumulator samochodowy jest rozładowany, zepsuty lub go brakuje, lecz w pobliżu znajduje się źródło zasilania (sieć lub generator), z którego można zasilić spawarkę. Należy zauważyć, że najczęściej w tym przypadku chodzi o uruchomienie samochodów z 12-woltowymi sieciami pokładowymi - samochodów osobowych, lekkich ciężarówek i autobusów; jednak technicznie nic nie stoi na przeszkodzie, aby zapewnić kompatybilność z ciężkimi pojazdami (ciężarówkami, autobusami) pracującymi pod napięciem 24 W. Te szczegóły należy wyjaśnić osobno.

- Koła transportowe. Obecność w konstrukcji spawarki specjalnych kół, które ułatwiają transport. Waga niektórych nowoczesnych modeli może sięgać kilkudziesięciu kilogramów, a przenoszenie takiego urządzenia może być trudne nawet dla kilku osób. Obecność kół pozwala obejść się siłami jednej osoby, nawet przy znacznej wadze urządzenia.

Umiejscowienie szpuli

Lokalizacja szpuli podajnika drutu.

Drut służy do spawania półautomatycznego (patrz „Rodzaj spawania”); szpula, na której jest on nawinięty, może znajdować się zarówno na zewnątrz aparatu, jak i wewnątrz. Nie ma zasadniczej różnicy w konstrukcji mechanizmu podającego, wydajności i innych parametrach pracy między modelami „zewnętrznymi” a „wewnętrznymi”, różnią się one głównie charakterystyką przechowywania i transportu. Na przykład wbudowana szpula zwiększa wymiary i wagę całego urządzenia, lecz nie trzeba jej nosić osobno.

Uchwyt spawalniczy (MIG/MAG)

Rodzaj uchwytu spawalniczego MIG/MAG, przewidzianego w konstrukcji spawarki.

Należy zaznaczyć, że MIG/MAG to spawanie w specjalnym środowisku gazowym (obojętnym lub aktywnym); patrz „Rodzaj spawania”, aby uzyskać szczegółowe informacje. Uchwyt spawalniczy można opisać jako specjalny wąż, który łączy palnik ze spawarką (a dokładniej palnik jest zwykle częścią uchwytu). Przez taki wąż podawany jest zarówno drut, jak i gaz osłonowy do miejsca spawania.

Uchwyty spawalnicze MIG/MAG najczęściej robione są jako odłączalne, z możliwością podłączenia do standardowego gniazda euro. Zalety tej konstrukcji są oczywiste: przy przechowywaniu, transporcie lub po prostu przy długich przerwach w pracy, wąż można odłączyć i zwinąć, dzięki czemu nie zajmuje on dodatkowej przestrzeni ani nie plącze się pod nogami. Dodatkowo w razie potrzeby – np. w przypadku uszkodzenia lub w nieodpowiedniej długości – fabryczny uchwyt można wymienić na inny.

Odłączana konstrukcja jest mniej popularna, ponieważ jest mniej wygodna. Niemniej jednak wariant ten ma swoje zalety: mocowanie uchwytu do spawarki jest maksymalnie niezawodne, a jednocześnie niedrogie.
Tesla Weld MIG/MAG/MMA 285 często porównują
Tesla Weld MMA 255 często porównują