Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie Asus PRIME X570-PRO vs Asus PRIME X470-PRO

Dodaj do porównania
Asus PRIME X570-PRO
Asus PRIME X470-PRO
Asus PRIME X570-PROAsus PRIME X470-PRO
Porównaj ceny 1
od 597 zł
Produkt jest niedostępny
TOP sprzedawcy
Główne
10-fazowy układ zasilania rdzeni i więcej węzłów. PWM-kontrolerze ASP1405I. Ferrytowe dławiki i układu IR3553M.
Przeznaczeniedo gier (overclocking)do gier (overclocking)
SocketAMD AM4AMD AM4
FormatATXATX
Fazy zasilania1410
Radiator VRM
Podświetlenie LED
Synchronizacja podświetleniaAsus Aura SyncAsus Aura Sync
Wymiary (WxS)305x244 mm305x244 mm
Chipset
ChipsetAMD X570AMD X470
BIOSAmi
UEFI BIOS
Chłodzenie aktywne
Pamięć RAM
DDR44 banki(ów)4 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa
Maksymalna częstotliwość taktowania5100 MHz3466 MHz
Maks. wielkość pamięci128 GB64 GB
Obsługa XMP
Obsługa ECC
Interfejsy dyskowe
SATA 3 (6 Gb/s)6 szt.6 szt.
Złącze M.22 szt.2 szt.
Interfejs M.22xSATA/PCI-E 4x1xSATA/PCI-E 4x, 1xSATA/PCI-E 2x
Chłodzenie dysku SSD M.2
Zintegrowany kontroler RAID
 /Raid 0, 1, 10/
 /RAID 0, RAID 1, RAID 10/
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x3 szt.3 szt.
Liczba gniazd PCI-E 16x3 szt.3 szt.
Tryby PCI-E16x/0x/4x, 8x/8x/4x16x/0x/4x, 8x/8x/4x
Obsługa PCI Express4.03.0
Obsługa CrossFire (AMD)
Obsługa SLI (NVIDIA)
Stalowe złącza PCI-E
Złącza na płycie głównej
USB 2.02 szt.2 szt.
USB 3.2 gen11 szt.1 szt.
USB 3.2 gen21 szt.1 szt.
Wyjścia wideo
Wyjście HDMI
Wersja HDMIv.2.0
DisplayPort
Wersja DisplayPortv.1.2
Zintegrowany układ audio
Układ audioRealtek S1220ARealtek S1220A
Dźwięk (liczba kanałów)7.17.1
Optyczne S/P-DIF
Interfejsy sieciowe
LAN (RJ-45)1 Gb/s1 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANIntel I211-ATIntel I211-AT
Złącza na tylnym panelu
USB 3.2 gen14 szt.5 szt.
USB 3.2 gen23 szt.2 szt.
USB C 3.2 gen11 szt.
USB C 3.2 gen21 szt.
PS/21 szt.1 szt.
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8+4 pin8 pin
Liczba złączy wentylatorów CPU7 szt.5 szt.
Data dodania do E-Katalogmaj 2019kwiecień 2018

Fazy zasilania

Liczba faz zasilania procesora przewidzianych na płycie głównej.

W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.

Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.

Chipset

Model chipsetu zainstalowany na płycie głównej. Obecnie stosowane modele chipsetów to: B450, A520, B550, X570, A620, B650, B650E, X670, X670E, X870, X870E.. W przypadku Intel lista chipsetów wygląda następująco: X299, H410, B460, H470, Z490, H510, B560, H570, Z590, H610, B660, H670, Z690, B760, Z790.

Chipset to zestaw układów scalonych na płycie głównej, za pośrednictwem których bezpośrednio odbywa się interakcja poszczególnych komponentów systemu: procesora, pamięci RAM, napędów, adapterów audio i wideo, kontrolerów sieciowych itp. Technicznie taki zestaw składa się z dwóch części - mostka północn...ego i południowego. Kluczowym elementem jest mostek północny, który łączy procesor, pamięć, kartę graficzną i mostek południowy (wraz z urządzeniami, którymi steruje). Dlatego nazwa mostka północnego jest często wskazywana jako model chipsetu, a model mostka południowego jest określany osobno (patrz poniżej); Jest to schemat stosowany w tradycyjnych płytach głównych, w których mostki są wykonane jako oddzielne mikroukłady. Istnieją również rozwiązania, w których oba mostki są połączone w jednym chipie; dla nich można wskazać całą nazwę chipsetu.

Tak czy inaczej, znając model chipsetu, możesz znaleźć wiele różnych dodatkowych danych na jego temat - od ogólnych recenzji po specjalne instrukcje. Zwykły użytkownik z reguły nie potrzebuje takich informacji, jednak mogą być one przydatne przy wykonywaniu specjalistycznych zadań zawodowych.

BIOS

Rodzaj systemu BIOS zainstalowanego na płycie głównej. Zwróć uwagę, że tu pod uwagę brane są tylko „klasyczne” BIOS-y firm Ami, Award i Intel; bardziej zaawansowany UEFI BIOS został przeniesiony do odrębnej kategorii (patrz poniżej).

BIOS to podstawowy system wejściowo/wyjściowy, własne oprogramowanie układowe płyty głównej przechowywane w jej pamięci trwałej; pozwala wszystkim komponentom sprzętowym systemu komunikować się ze sobą, nawet jeśli system operacyjny nie jest zainstalowany na komputerze. Innymi słowy, to „bios” kontroluje komputer od momentu włączenia do załadowania systemu operacyjnego. To oprogramowanie zawiera również zestaw narzędzi do zmiany podstawowych ustawień.

Mówiąc o konkretnych wersjach, należy powiedzieć, że wspomniane „klasyczne” oprogramowanie sprzętowe nie ma zasadniczych różnic; poza tym zestaw funkcji w dużej mierze zależy nie od typu BIOS-u, ale od modelu płyty głównej. Dlatego rodzaj BIOS-u nie jest kluczem do wyboru; nawet dla profesjonalistów i entuzjastów rzadko okazuje się być zasadniczym.

Chłodzenie aktywne

Obecność własnego wbudowanego systemu chłodzenia aktywnego.

Aktywnym nazywa się chłodzenie, w którym ciepło jest przymusowo odprowadzane z nagrzewającego się przedmiotu, a funkcja ta jest zwykle zapewniana przy pomocy wentylatorów. To rozwiązanie ma na celu zmniejszenie obciążenia termicznego płyt głównych bez zewnętrznych chłodnic, które i tak będą dodatkowo zamontowane.

Architektura pamięci

Tryb pracy płyty głównej z zainstalowaną na niej pamięcią RAM. Może wyglądać następująco:

- Jednokanałowy. Najprostszy tryb pracy: jeden kontroler pracuje jednocześnie z całą ilością pamięci RAM. Główne zalety takiego trybu — prostota i niska cena kontrolerów. Jednak jego wydajność okazuje się bardzo niska, dlatego jednokanałowe płyty główne są obecnie niezwykle rzadkie - głównie wśród niedrogich modeli do domu / biura.

- Dwukanałowy. W tym trybie z pamięcią RAM pracują dwa niezależne kontrolery, sama pamięć jest podzielona na dwa bloki, a wymiana informacji odbywa się w dwóch strumieniach, co zwiększa szybkość pracy. Wzrost wydajności w tym przypadku może wynosić od 5 - 10% do 100%, w zależności od określonej aplikacji i funkcji systemu. Należy pamiętać, że dwie kości RAM o identycznej charakterystyce są wysoce pożądane do pracy w trybie dwukanałowym - pozwala to osiągnąć optymalną wydajność, ponadto nie wszystkie płyty główne są w stanie współpracować z parami różnych modułów pamięci.

- Dwu/trzy-kanałowy. Płyty główne obsługujące trzy-kanałowy tryb pracy pamięci RAM. Ten tryb jest podobny do trybu dwukanałowego i zasadniczo różni się tylko liczbą wątków i kości kart pamięci – powinno ich być ich 3 (lub wielokrotność 3). W tym przypadku idealnie byłoby, gdyby takie listwy były jednakowe; nie ma gwarancji możliwości korzystania z różnych kości we wszystkich płytach głównych, a jeśli częstotliwość nie jest zgodna, prędkość kanału będzie ogranic...zona przez prędkość najwolniejszego modułu pamięci RAM. Jeśli zainstalowane są tylko dwa kompatybilne paski, system będzie działał w trybie dwukanałowym.

- Dwu/cztero-kanałowy. Płyty główne z obsługą czterokanałowego trybu RAM. Ten tryb jest całkowicie podobny do opisanego powyżej dwu/trzykanałowego i różni się jedynie liczbą modułów RAM - potrzebuje 4 (lub wielokrotności czterech). W tym przypadku podobnie, instalując mniejszą liczbę kości, taka płyta główna może pracować w odpowiednim trybie - dwu- lub trzykanałowym (najważniejsze, aby listwy spełniały wymogi do obsługi takiego trybu).

- Sześciokanałowy. Tryb pracy zakładający obecność 6 oddzielnych kontrolerów pamięci i wielokrotną liczbę slotów dla poszczególnych modułów (w niektórych płytach głównych — 12, teoretycznie może być ich więcej). Występuje wyłącznie w rozwiązaniach wysokiej jakości, zwykle klasy HEDT (patrz „Przeznaczenie”), zaprojektowanych z myślą o bezkompromisowej wydajności.

Maksymalna częstotliwość taktowania

Maksymalna częstotliwość taktowania pamięci RAM obsługiwana przez płytę główną. Rzeczywista częstotliwość taktowania zainstalowanych modułów pamięci RAM nie powinna przekraczać tego wskaźnika - w przeciwnym razie możliwe są awarie, a możliwości pamięci RAM nie będą mogły być w pełni wykorzystane.

W przypadku nowoczesnych komputerów PC częstotliwość pamięci RAM 1500 - 2000 MHz lub mniej jest uważana za bardzo niską, 2000 - 2500 MHz jest skromna, 2500 - 3000 MHz jest średnia, 3000 - 3500 MHz jest powyżej średniej, a w najbardziej zaawansowanych płytach obsługiwane mogą być 3500 - 4000 MHz, a nawet ponad 4000 MHz.

Maks. wielkość pamięci

Maksymalna ilość pamięci RAM, którą można zainstalować na płycie głównej.

Wybierając według tego parametru, ważne jest, aby wziąć pod uwagę planowane wykorzystanie komputera i rzeczywiste potrzeby użytkownika. Tak więc woluminy do 32 GB włącznie wystarczą, aby rozwiązać wszelkie podstawowe problemy i wygodnie uruchamiać gry, ale bez znacznej rezerwy na aktualizację. 64 GB to optymalna opcja w wielu zastosowaniach profesjonalnych, a w przypadku zadań wymagających dużej ilości zasobów, takich jak renderowanie 3D, 96 GB, a nawet 128 GB pamięci nie będzie limitem. Najbardziej „pojemne” płyty główne są kompatybilne z wolumenami 192 GB i więcej - są to głównie najwyższej klasy rozwiązania dla serwerów i HEDT (patrz „W kierunku”).

Możesz wybrać ten parametr z rezerwą - biorąc pod uwagę potencjalną rozbudowę pamięci RAM, ponieważ zainstalowanie dodatkowych kości RAM to najprostszy sposób na zwiększenie wydajności systemu. Biorąc ten czynnik pod uwagę, wiele stosunkowo prostych płyt głównych obsługuje bardzo duże ilości pamięci RAM.

Obsługa XMP

Możliwość pracy płyty głównej z modułami pamięci RAM obsługującymi technologię XMP (Extreme Memory Profiles). Technologia ta została opracowana przez firmę Intel; jest stosowana w płytach głównych i jednostkach pamięci RAM i działa tylko wtedy, gdy oba te elementy systemu są kompatybilne z XMP. Podobna technologia AMD nosi nazwę AMP.

Główną funkcją XMP jest ułatwienie podkręcania systemu ("overclockinging"): specjalne profile podkręcania są wcześniej „wszyte" w pamięć dzięki tej technologii, i w razie potrzeby, użytkownik może wybrać tylko jeden z tych profili bez stosowania skomplikowanych procedur konfiguracji. Jest to nie tylko łatwiejsze, ale także bezpieczniejsze: każdy profil dodany do paska przechodzi test stabilności działania.

Obsługa ECC

Możliwość współpracy płyty głównej z modułami pamięci obsługującymi technologię ECC (Error Checking and Correction). Technologia ta pozwala korygować drobne błędy, które pojawiają się w procesie pracy z danymi i zwiększa ogólną niezawodność systemu; jest stosowana głównie w serwerach.
Dynamika cen
Asus PRIME X570-PRO często porównują
Asus PRIME X470-PRO często porównują