Tryb nocny
Polska
Katalog   /   Komputery   /   Komputery stacjonarne

Porównanie Qbox I21xx I2176 vs Qbox I26xx I2655

Dodaj do porównania
Qbox I21xx (I2176)
Qbox I26xx (I2655)
Qbox I21xx I2176Qbox I26xx I2655
od 800 zł
Produkt jest niedostępny
od 1 408 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajstacjonarnystacjonarny
Format obudowyDesktopDesktop
Procesor
Rodzajdesktopowydesktopowy
SeriaCeleronPentium
ModelJ3355J3355
Liczba rdzeni22
Liczba wątków22
Częstotliwość taktowania2 GHz2 GHz
Częstotliwość TurboBoost / TurboCore2.5 GHz2.5 GHz
Pamięć RAM
Pojemność pamięci RAM4 GB8 GB
Rodzaj pamięciDDR3DDR3
Karta graficzna
Rodzaj karty graficznejzintegrowanazintegrowana
Model karty graficznejHD Graphics 500HD Graphics 500
Dysk
Rodzaj dyskuSSDSSD
Pojemność dysku120 GB240 GB
Przedni panel
Napędbrakbrak
mini-Jack (3,5 mm)
USB 2.02 szt.
Multimedia
LAN (RJ-45)1 Gb/s1 Gb/s
Wi-Fibrakbrak
Dźwięk7.1
Dane ogólne
Moc zasilacza120 W120 W
Preinstalowany system operacyjnybez systemu operacyjnegoWindows 10 Home
Materiał obudowystalstal
Kolor obudowy
Data dodania do E-Katalogstyczeń 2020grudzień 2019

Seria

Głównymi producentami procesorów w dzisiejszych czasach są Intel i AMD, a w 2020 roku swoje procesory z serii M1 zaprezentowała również firma Apple (z dalszym rozwinięciem w postaci M1 Max i M1 Ultra), kilka lat później zaprezentowawszy drugą serię M2 (M2 Pro, M2 Max, M2 Ultra) oraz trzecią M3 Lista aktualnych serii Intela obejmuje Atom, Celeron, Pentium, Core i3, Core i5, Core i7, Core i9, Core Ultra 9 oraz Xeon. Dla AMD z kolei ta lista wygląda tak: AMD Athlon, AMD FX, Ryzen 3, Ryzen 5, Ryzen 7, Ryzen 9 i Ryzen Threadripper.

Ogólnie rzecz biorąc, każda seria obejmuje procesory różnych generacji, podobne...pod względem ogólnego poziomu i pozycjonowania. Oto bardziej szczegółowy opis każdej z opisanych powyżej opcji:

— Atom. Procesory pierwotnie zaprojektowane dla urządzeń mobilnych. W związku z tym charakteryzują się kompaktowością, wysoką wydajnością energetyczną i niskim wytwarzaniem ciepła, jednak nie są specjalnie wydajne. Idealnie przystosowane do mikrokomputerów (patrz „Rodzaj”), a wśród bardziej „wielkoformatowych” systemów są niezwykle rzadkie - najczęściej w najskromniejszych konfiguracjach.

— Celeron. Procesory z niskiej półki cenowej, najprostsze i najtańsze układy klasy konsumenckiej firmy Intel dla komputerów stacjonarnych, o stosownych parametrach.

— Pentium. Rodzina niedrogich procesorów desktopowych Intel, nieco bardziej zaawansowana niż Celeron, jednak gorsza od serii Core i*.
br> — Core i3. Najprostsza i najtańsza seria wśród procesorów desktopowych Core firmy Intel, zawiera budżetowe i niedrogie układy średniej klasy, które jednak przewyższają „Celerony” i „Pentiumy”.

— Core i5. Rodzina procesorów Intel Core średniej klasy; ogólnie układy z tej serii można przypisać do średniego poziomu według standardów systemów stacjonarnych.

— Core i7. Seria wysokowydajnych procesorów, które od dawna znajdują się na szczycie wśród układów Core; dopiero w 2017 roku straciła tę pozycję na rzecz rodziny i9. Jednak obecność procesora i7 nadal oznacza dość potężną i zaawansowaną konfigurację; w szczególności takie procesory znajdują się w komputerach All-In-One klasy premium, a także są dość popularne w systemach do gier.

— Core i9. Najlepsza seria wśród procesorów Core, najmocniejsza wśród układów ogólnego przeznaczenia firmy Intel do komputerów stacjonarnych. W szczególności liczba rdzeni nawet w najskromniejszych modelach wynosi co najmniej 6. Takie układy są używane głównie w komputerach do gier.

— Xeon. Wysokiej klasy procesory Intel, możliwości których wykraczają poza standardowe układy do komputerów stacjonarnych. Zaprojektowane do użytku specjalistycznego, wśród komputerów stacjonarnych znajdują się głównie w wydajnych stacjach roboczych.

— AMD FX. Rodzina procesorów AMD, pozycjonowana jako wysokowydajne i jednocześnie niedrogie rozwiązania - w tym dla systemów do gier. Co ciekawe, niektóre modele są standardowo dostarczane z chłodzeniem wodnym.

— Ryzen 3. Układy AMD Ryzen (wszystkie serie) są sprzedawane jako wysokiej klasy rozwiązania dla graczy, programistów, grafików i edytorów wideo. To właśnie wśród tych układów AMD zapoczątkowało mikroarchitekturę Zen, która wprowadziła jednoczesną wielowątkowość, co znacznie zwiększyło liczbę operacji na cykl przy tej samej częstotliwości taktowania. A Ryzen 3 to najtańsza i najskromniejsza pod względem właściwości rodzina wśród „Ryzenów”. Takie procesory są produkowane przy użyciu tych samych technologii, co starsze serie, jednak w Ryzen 3 połowa rdzeni obliczeniowych jest dezaktywowana. Niemniej jednak w tej linii znajdują się dość wydajne modele, w tym te przeznaczone do konfiguracji gier i stacji roboczych.

— Ryzen 5. Rodzina procesorów Ryzen ze średniej półki. Druga seria na tej architekturze, wydana w kwietniu 2017 roku jako tańsza alternatywa dla układów Ryzen 7. Układy Ryzen 5 mają nieco skromniejszą wydajność (w szczególności niższe taktowanie i, w niektórych modelach, pamięć podręczną L3). Poza tym są one całkowicie podobne do „siódemki” i są również pozycjonowane jako wysokowydajne układy do gier i stacji roboczych.

— Ryzen 7. Historycznie pierwsza seria procesorów AMD oparta na mikroarchitekturze Zen (zobacz „Ryzen 3” powyżej, aby uzyskać więcej szczegółów). Jedna ze starszych rodzin wśród „Ryzenów”, pod względem wydajności ustępuje jedynie linii Threadripper; wiele komputerów stacjonarnych opartych na tych układach to modele do gier.

— Ryzen 9. Debiut procesorów AMD Ryzen 9 opartych na mikroarchitekturze Zen miał miejsce w 2019 roku. Seria ta stała się topową wśród wszystkich Ryzenów, wypierając Ryzena 7 ze szczytu podium. Pierwsze modele Ryzen 9 miały 12 rdzeni i 24 wątki, później liczba ta została zwiększona do 16 i 32. Procesory z tej linii są zwykle używane do zadań profesjonalnych: projektowania, edycji wideo, renderowania 3D, gier, streamingu oraz innych zastosowań wymagających dużej mocy obliczeniowej.

— Ryzen Threadripper. Specjalistyczne procesory klasy Hi-End zaprojektowane z myślą o maksymalnej wydajności. Montowane są głównie w systemach do gier i stacjach roboczych.

— Apple M1. Seria procesorów firmy Apple wprowadzona w listopadzie 2020 r. Należą do rozwiązań mobilnych (patrz „Rodzaj” powyżej), są wykonywane zgodnie ze schematem system-on-chip: pojedynczy moduł łączy procesor, kartę graficzną, pamięć RAM (w pierwszych modelach - 8 lub 16 GB), półprzewodnikowy dysk NVMe i kilka innych komponentów (w szczególności kontrolery Thunderbolt 4). W związku z tym wśród komputerów stacjonarnych głównym obszarem zastosowania takich układów są kompaktowe nettopy. Jeśli chodzi o specyfikacje, w oryginalnych konfiguracjach procesory M1 są wyposażone w 8 rdzeni - 4 wydajne i 4 ekonomiczne; te ostatnie, według ich twórców, zużywają 10 razy mniej energii niż te pierwsze. To, w połączeniu z pięcionanometrowym procesem technologicznym, zaowocowało jednocześnie bardzo wysoką energooszczędnością i wydajnością.

— Apple M1 Max. Bezkompromisowo potężny SoC z naciskiem na maksymalizację wydajności komputera stacjonarnego Apple przy wykonywaniu skomplikowanych zadań. Linia Apple M1 Max została wprowadzona jesienią 2021 roku, zadebiutowała na pokładzie komputerów Mac Studio.

Apple M1 Max składa się z 10 rdzeni: 8 z nich są wydajne, a 2 kolejne energooszczędne. Maksymalna ilość wbudowanej połączonej pamięci sięga 64 GB, „pułap” jej przepustowości to 400 GB/s. Wydajność graficzna wersji Max systemu jednoukładowego M1 jest około dwa razy większa niż Apple M1 Pro. Układ zawiera ponad 57 miliardów tranzystorów. Do jego konstrukcji wprowadzono również dodatkowy akcelerator dla profesjonalnego kodeka wideo ProRes, który umożliwia łatwe odtwarzanie wielu strumieni wysokiej jakości wideo ProRes w rozdzielczościach kadru 4K i 8K.

— Apple M1 Ultra. Formalnie chip M1 Ultra składa się z dwóch procesorów Apple M1 Max opartych na UltraFusion, co pozwala na przesyłanie informacji z prędkością do 2,5 Tb/s. W języku liczb ten tandem składa się z 20 rdzeni obliczeniowych ARM (16 wysokowydajnych i 4 energooszczędne), 64-rdzeniowego podsystemu graficznego i 32-rdzeniowej jednostki obliczeń neuronowych. System na czipie obsługuje do 128 GB łącznej pamięci. W obudowie procesora znajduje się około 114 miliardów tranzystorów. Głównym przeznaczeniem Apple M1 Ultra jest pewna praca ze złożonymi aplikacjami, intensywnie korzystającymi z zasobów w rodzaju przetwarzania wideo 8K lub renderowania 3D. W życiu procesor można ujrzeć na pokładzie komputerów stacjonarnych Mac Studio.

Oprócz serii opisanych powyżej, we współczesnych komputerach stacjonarnych można znaleźć następujące procesory:

AMD Fusion A4. Cała rodzina procesorów Fusion została pierwotnie zaprojektowana jako urządzenia ze zintegrowaną kartą graficzną, które łączą jednostkę centralną i kartę graficzną w jednym układzie; takie układy nazywane są APU - Accelerated Processing Unit. Serie z oznaczeniem „A” są wyposażone w najpotężniejszą zintegrowaną grafikę w rodzinie, która w niektórych przypadkach może konkurować na równi z niedrogimi dedykowanymi kartami graficznymi. Im wyższa liczba w oznaczeniu serii, tym jest bardziej zaawansowana ona jest; A4 to najskromniejsza seria Fusion A.

AMD Fusion A6. Seria procesorów z linii Fusion A jest stosunkowo skromna, jednak nieco bardziej zaawansowana niż A4. Aby zapoznać się ze wspólnymi właściwościami wszystkich urządzeń Fusion A, zobacz „AMD Fusion A4” powyżej.

AMD Fusion A8. Dość zaawansowana seria procesorów Fusion A, średnia opcja pomiędzy stosunkowo skromnymi A4 i A6, a high-endowymi A10 i A12. Aby zapoznać się ze wspólnymi właściwościami wszystkich urządzeń Fusion A, zobacz „AMD Fusion A4” powyżej.

— AMD Fusion A9. Kolejna zaawansowana seria z rodziny Fusion A, nieco gorsza tylko od serii A10 i A12. Aby zapoznać się ze wspólnymi właściwościami wszystkich urządzeń Fusion A, zobacz „AMD Fusion A4” powyżej.

AMD Fusion A10. Jedna z najlepszych serii w linii Fusion A. Aby zapoznać się z ogólnymi właściwościami tej linii, zobacz „AMD Fusion A4” powyżej.

— AMD Fusion A12. Topowa seria z linii APU Fusion A, wprowadzona w 2015 roku; pozycjonuje się jako profesjonalne procesory z zaawansowanymi (nawet według standardów APU) możliwościami graficznymi. Aby zapoznać się z ogólnymi właściwościami linii Fusion A, zobacz AMD Fusion A4 powyżej.

— Seria AMD E. Ta seria procesorów należy do APU, podobnie jak opisana powyżej Fusion A, jednak zasadniczo różni się specjalizacją: głównym obszarem zastosowania serii E są urządzenia kompaktowe, w przypadku komputerów stacjonarnych — głównie nettopy (patrz „Rodzaj”). W związku z tym procesory te charakteryzują się kompaktowością, niskim rozpraszaniem ciepła i zużyciem energii, jednak ich moc obliczeniowa jest również niska.

— Athlon X4. Seria niedrogich procesorów klasy konsumenckiej, pierwotnie wydanych w 2015 roku jako stosunkowo niedrogie i jednocześnie stosunkowo wydajne rozwiązania dla gniazda FM+.

— AMD G. Rodzina ultrakompaktowych i energooszczędnych procesorów AMD, wykonanych na zasadzie „system na chipie” (SoC). W przeciwieństwie do wielu podobnych układów wykorzystuje architekturę x86, a nie ARM. Pozycjonuje się jako rozwiązanie dla urządzeń z naciskiem na grafikę, w szczególności do gier. Nie ma jednak mowy o komputerach stacjonarnych do gier: podobnie jak większość procesorów o podobnej specyfikacji, AMD G występuje głównie w cienkich klientach (patrz „Rodzaj”).

— VIA. Procesory firmy o tej samej nazwie, związane głównie z energooszczędnymi rozwiązaniami „mobilnymi” – w szczególności wiele modeli VIA jest bezpośrednio porównywanych do Intel Atom. Jednak pomimo skromnej wydajności takie procesory można znaleźć nawet wśród systemów stacjonarnych; a w przyszłości firma planuje stworzyć pełnowartościowe układy do komputerów stacjonarnych, konkurując z AMD i Intel.

— ARM Cortex-A. Grupa procesorów firmy ARM - twórcy mikroarchitektury o tej samej nazwie i największego producenta układów na niej opartych. Cechą tej mikroarchitektury w porównaniu z klasyczną x86 jest tzw. zredukowany zestaw instrukcji (RISC): procesor działa z uproszczonym zestawem instrukcji. To nieco ogranicza funkcjonalność, jednak pozwala na tworzenie bardziej kompaktowych, „zimnych” i jednocześnie wydajnych układów. Z wielu powodów architektura ARM jest wykorzystywana głównie w procesorach „mobilnych” przeznaczonych dla smartfonów, tabletów itp. To samo dotyczy serii ARM Cortex-A; takie procesory są rzadko instalowane w komputerach stacjonarnych i zwykle chodzi o kompaktowe, skromne urządzenie, takie jak „cienki klient” (patrz „Rodzaj”).

— nVidia Tegra. Początkowo procesory te zostały stworzone z myślą o urządzeniach przenośnych, jednak ostatnio zaczęto je instalować na komputerach stacjonarnych, głównie w komputerach All-In-One. Są to urządzenia typu „system-on-chip”, które wykorzystują nie „desktopową” architekturę x86, a „mobilną” ARM, co wymaga użycia odpowiednich systemów operacyjnych; najczęściej używane przez system Android (patrz „Preinstalowany system operacyjny”).

— Armada. Kolejna odmiana procesorów w architekturze ARM, pozycjonowana jako wysokowydajne rozwiązania do przetwarzania w chmurze i serwerów domowych, w tym NAS. Występuje w pojedynczych modelach „cienkich klientów” (patrz „Rodzaj”).

— Tera. Wyspecjalizowana rodzina procesorów zaprojektowana specjalnie dla „cienkich klientów” (patrz „Rodzaj”) i zasadniczo różni się od klasycznych procesorów (zarówno pełnowymiarowych, jak i kompaktowych). Systemy oparte na Tera są zwykle pełnoprawnymi „klientami zerowymi” (zero client), absolutnie niezdolnymi do samodzielnej pracy. Innymi słowy są to urządzenia przeznaczone do tworzenia „wirtualnego pulpitu”: użytkownik pracuje z interfejsem i urządzeniami końcowymi (monitor, klawiatura, mysz itp.), jednak wszystkie operacje odbywają się na serwerze. Pozwala to na zwiększenie bezpieczeństwa podczas pracy z danymi wrażliwymi. Jednak w bardziej tradycyjnych komputerach stacjonarnych procesory Tera są prawie nie do stosowania.

Przestarzałe serie procesorów, które nadal można spotkać w użyciu (jednak nie w sprzedaży), obejmują Sempron, Phenom II i Athlon II firmy AMD oraz Core 2 Quad i Core 2 Duo firmy Intel.

Zwróć uwagę, że w sprzedaży są konfiguracje, które nie są wyposażone w procesor - z myślą, że użytkownik może go wybrać według własnego uznania; jest to jednak dość rzadka opcja.

Pojemność pamięci RAM

Ilość pamięci o dostępie swobodnym (pamięć główna lub RAM) dostarczonej w zestawie z komputerem.

Od tego parametru zależy bezpośrednio ogólna wydajność komputera: przy pozostałych warunkach równych, więcej pamięci RAM przyspiesza pracę, pozwala radzić sobie z bardziej zasobożernymi zadaniami i ułatwia jednoczesne wykonywanie dużej liczby procesów. Jeśli chodzi o konkretne liczby, minimalna pojemność wymagana do stabilnej pracy komputera ogólnego przeznaczenia wynosi teraz 4 GB. Dla mikrokomputerów i cienkich klientów mniejsza pojemność jest wystarczająca, podczas gdy w systemach do gier jest zainstalowanych co najmniej 8 GB. 16 GB, a tym bardziej 32 GB – to już bardzo solidne pojemności, a w najmocniejszych i wydajniejszych systemach pojawiają się wartości 64 GB i nawet więcej. Również w sprzedaży można znaleźć konfiguracje bez pamięci RAM - w przypadku takiego urządzenia użytkownik może wybrać pojemność pamięci według własnego uznania; z wielu powodów ta konfiguracja jest szczególnie popularna w nettopach.

Zwróć uwagę, że wiele nowoczesnych komputerów umożliwia zwiększenie ilości pamięci RAM, więc nie zawsze ma sens kupowanie drogiego urządzenia z dużą ilością pamięci RAM - czasami rozsądniej jest zacząć od prostszego modelu i rozszerzyć go, jeśli pojawia...się potrzeba. Możliwość uaktualnienia w takich przypadkach powinna zostać wyjaśniona oddzielnie.

Pojemność dysku

Pojemność głównego dysku dostarczonego w zestawie z komputerem. W przypadku modeli z kombinowanymi pamięciami masowymi (na przykład HDD+SSD, patrz „Rodzaj pamięci masowej”) za główny w tym przypadku uważany jest większy dysk twardy; a jeśli w zestawie znajdują się dwa dyski HDD, to zwykle są one o takiej samej pojemności.

Z czysto praktycznego punktu widzenia im więcej danych może pomieścić dysk, tym lepiej. Tak więc wybór według tego wskaźnika zależy głównie od ceny: duża pojemność nieuchronnie oznacza wyższy koszt. Ponadto pamiętaj, że moduły SSD w przeliczeniu na gigabajt są znacznie droższe niż dyski twarde; tak więc pod względem pojemności i kosztów mogą być porównywane tylko dyski tego samego typu.

Jeśli chodzi o konkretną pojemność, to wskaźniki 250 GB lub mniej we współczesnych komputerach stacjonarnych można znaleźć głównie wśród dysków SSD. Dyski twarde tej wielkości prawie nigdy nie są używane, dla nich pojemności od 250 do 500 GB są nadal uważane za raczej skromne. 501 – 750 GB to całkiem dobra wartość jak na dysk SSD i jest najczęściej używana wśród nich. 751 GB – 1 TB to imponująca liczba jak na dysk SSD i średni poziom dla dysków twardych, 1,5 – 2 TB to bardzo solidna pojemność nawet jak na HDD. A bardzo dużą pojemność – ponad 2 TB – paradoksa...lnie można znaleźć nawet wśród czystych dysków SSD: takie dyski są instalowane w wysokiej klasy stacjach roboczych, gdzie prędkość jest nie mniej ważna niż pojemność.

mini-Jack (3,5 mm)

Dostępność złącza mini-Jack (3,5 mm) na panelu przednim komputera. Dokładniej, w zwykłych komputerach stacjonarnych, systemach do gier i komputerach All-In-One (patrz „Rodzaj”) najczęściej występują dwa takie złącza: jedno pełni rolę wyjścia na słuchawki, głośniki itp., drugie to wejście mikrofonowe. Ale w kompaktowych urządzeniach, takich jak niektóre nettopy, złącze mini-Jack może być tylko jedno - uniwersalny port, do którego można podłączyć słuchawki/głośniki oraz zestaw słuchawkowy z jednym wspólnym wtykiem do mikrofonu i słuchawek.

Tak czy inaczej, takie złącza są bliżej użytkownika i są wygodniejsze do podłączenia niż analogiczne wyjścia karty dźwiękowej na panelu tylnym obudowy.

USB 2.0

Liczba pełnowymiarowych złączy USB 2.0 dostępnych z przodu komputera.

USB to najpopularniejszy współczesnie interfejs do podłączania urządzeń peryferyjnych. A liczba złączy to odpowiednio liczba urządzeń, które można jednocześnie podłączyć do przedniego panelu bez użycia rozgałęźników. W szczególności wersja 2.0 była najpopularniejsza jakiś czas temu, ale teraz jest uważana za przestarzałą i stopniowo zastępują ją bardziej zaawansowane standardy, takie jak USB 3.0 (3.1 Gen1). Niemniej jednak możliwości USB 2.0 (prędkość przesyłania danych do 480 Mb/s) są nadal wystarczające dla wielu urządzeń peryferyjnych – od klawiatur i myszy po drukarki. Więc ten standard jest wciąż daleki od całkowitego zniknięcia, a w niektórych komputerach na panelu przednim można zapewnić kilka takich portów jednocześnie.

Osobno należy zauważyć, że podobne złącza najczęściej znajdują się z tyłu obudowy. Jednak panel przedni jest bliżej użytkownika, a gniazda na nim są optymalne dla urządzeń peryferyjnych, które muszą być często podłączane i odłączane, takich jak dyski flash.

Dźwięk

Format dźwięku obsługiwany przez kartę dźwiękową komputera. Wskazywany w zależności od typu urządzenia. W przypadku klasycznych komputerów stacjonarnych (patrz „Rodzaj”) format dźwięku odpowiada największej liczbie kanałów, które komputer może wyprowadzić przez wyjścia analogowe - od tego zależy bezpośrednio możliwość użycia jednego lub drugiego zestawu głośników. W przypadku urządzeń z wbudowanymi głośnikami, głównie komputerami All-In-One (patrz „Rodzaj”), ten punkt zwykle określa format wbudowanych głośników.

Należy również pamiętać, że interfejsy cyfrowe, takie jak SP/DIF (patrz „Złącza”), mogą zapewnić więcej kanałów, ale takiego sygnału nie można bezpośrednio wyprowadzić do głośników - potrzebny jest odbiornik audio lub inny dodatkowy konwerter. Tak więc głównym parametrem jest liczba „analogowych” kanałów lub głośników. Dostępne opcje to:

- 2.0. Tradycyjne stereo to najskromniejszy format, który może zapewnić trójwymiarowe wrażenia dźwiękowe. Oczywiście tego dźwięku nie można porównywać pod względem „obecności” do zaawansowanych standardów, takich jak 5.1 i 7.1, ale w wielu przypadkach nawet to jest więcej niż wystarczające. Należy pamiętać, że format 2.0 jest najczęściej dostarczany w komputerach All-In-One - oznacza to dostępność pary wbudowanych głośników, zapewnić bardziej rozbudowany zestaw głośnikowy w takich komputerach może być trudno.

- 2.1. Dwukanałowy dźwięk st...ereo (patrz wyżej) uzupełniony o subwoofer zapewniający lepsze brzmienie basów. Z wielu powodów nie otrzymał dużego rozpowszechnienia, również znajduje się głównie w komputerach All-In-One - w takich urządzeniach instalowane są dwa zwykłe głośniki i subwoofer.

- 2.2. Rozszerzona wersja formatu 2.1, zakładająca dwa subwoofery. W teorii jest w stanie zapewnić mocniejszy i bardziej niezawodny bas, ale jest droższa, ale w praktyce korzyści te rzadko są zauważalne. Dlatego jest używana nawet rzadziej niż 2.1 - również głównie w komputerach All-In-One.

- 4.0. W teorii 4.0 to format dźwięku przestrzennego z dwoma przednimi i dwoma tylnymi kanałami. W komputerach stacjonarnych ten format występuje wyłącznie wśród komputerów All-In-One i zwykle oznacza obecność dwóch dodatkowych głośników, oprócz standardowych głośników stereo. Efektu „dźwięku ze wszystkich stron” nie da się z takim systemem osiągnąć, ale dźwięk jest i tak lepszy i pewniejszy niż w systemach 2.0. Jednak cena też jest wyższa, a różnica w dźwięku nie jest dla wszystkich istotna. Dlatego ten format nie stał się powszechny.

- 4.2. Opisana powyżej rozszerzona wersja 4.0, w której do ulepszonego 4-głośnikowego systemu stereo dodano parę subwooferów. Dzięki temu poprawia się jakość basu, ale wymiary i koszt głośników rosną jeszcze bardziej, dlatego takie systemy są jeszcze rzadziej spotykane.

- 5.1. Klasyczny format pełnowartościowego dźwięku przestrzennego („ze wszystkich stron”): dwa kanały przednie, jeden środkowy, dwa tylne i subwoofer. Wiele treści zostało wydanych z myślą o tym dźwięku, a w grach często zapewnia się kompatybilność z systemami 5.1. Jednocześnie obsługa tego formatu w czystej postaci jest stosunkowo rzadka wśród nowoczesnych komputerów stacjonarnych. Karty dźwiękowe 7.1 są używane znacznie częściej: posiadają bardziej zaawansowane funkcje, niewiele różnią się ceną i całkiem dobrze współpracują z 5.1.

- 7.1. Kolejne, po 5.1, ulepszenie pomysłu dźwięku przestrzennego. Takie systemy mają 5 tradycyjnych kanałów dźwiękowych (2 z przodu, 1 z przodu pośrodku i 2 z tyłu), a 2 dodatkowe kanały można rozmieścić na różne sposoby – jako kanały boczne, jako „dodatki” nad frontem lub z tyłu itp. W każdym przypadku format 7.1 pozwala uzyskać bardziej niezawodny dźwięk niż 5.1, a jego obsługa we współczesnych kartach dźwiękowych jest bardzo tania.

- 10.2. Specyficzny format audio używany w niektórych wysokiej klasy multimedialnych komputerach All-In-One. 10 głównych głośników w takich urządzeniach jest połączonych w soundbar pod ekranem i zapewnia możliwie wierny dźwięk przestrzenny w systemach bez tylnych kanałów. Ponadto takie głośniki są często wykonywane wielopasmowo - to znaczy zawierają specjalistyczne głośniki, które są zoptymalizowane pod kątem określonego pasma częstotliwości i tylko je odtwarzają. To jeszcze bardziej poprawia jakość dźwięku. Dwa subwoofery z kolei pozwalają uzyskać odpowiednią charakterystykę basu. Jednocześnie ta opcja jest niezwykle rzadka – zarówno ze względu na wysoki koszt, jak i dlatego, że na osobno dobranych głośnikach łatwiej osiągnąć pożądaną jakość dźwięku.

Preinstalowany system operacyjny

System operacyjny, z którym jest dostarczany komputer. Jego obecność jest opcjonalna - wiele konfiguracji jest sprzedawanych bez preinstalowanego systemu operacyjnego, z oczekiwaniem, że użytkownik będzie mógł wybrać system według własnego uznania. Jednak w wielu przypadkach łatwiej jest kupić komputer z systemem operacyjnym: pozwala to przynajmniej na korzystanie z niego zaraz po wyjęciu z pudełka (z kilkoma wyjątkami, patrz poniżej).

Najczęściej w naszych czasach komputery korzystają z systemu Windows 10, Windows 11, Linux lub macOS. Oto więcej szczegółów na ich temat i innych systemów operacyjnych:

- Windows 10. Wśród głównych innowacji jest wbudowany asystent głosowy Cortana, przeglądarka Edge, obsługa kilku pulpitów, zaktualizowane menu Start i centrum powiadomień, poważna aktualizacja standardowo preinstalowanych programów i wiele innych. Wydawany jest w kilku edycjach, w tym przypadku chodzi o wersję podstawową - Windows 10 Home, przeznaczoną do użytku domowego i małych organizacji.

- Windows 10 Pro. Profesjonalna edycja systemu Windows 10 opisanego powyżej, skierowana do profesjonalistów i entuzjastów biznesu i IT. Oprócz funkcjonalności systemu, Windows 10 Home oferuje szereg zaawansowanych funkcji – takich jak Active Directory, pulpit...zdalny, szyfrowanie BitLocker oraz narzędzie do pracy z maszynami wirtualnymi Hyper V. Należy pamiętać, że jeszcze bardziej zaawansowana edycja Pro For Workstations jest wydawana dla potężnych stacji roboczych, jednak praktycznie nie jest używana ona jako system preinstalowany - zakłada się, że wygodniej jest użytkownikowi wybrać, czy potrzebuje takiej wersji, czy nie.

- Windows 11. Pierwsza duża aktualizacja systemu Microsoft w ciągu ostatnich sześciu lat od wydania „dziesiątki”. W systemie operacyjnym została przerysowana większość ikon standardowych programów i kontrolek okien, lwiej części akcji towarzyszy nowa animacja. Najważniejszą rzeczą w przeprojektowaniu jest przycisk menu Start, który został przeniesiony na środek dolnej części ekranu. Wraz z systemem operacyjnym w Microsoft Store zadebiutowała aplikacja na Androida. Ogólnie rzecz biorąc, system można postrzegać jako dużą aktualizację systemu Windows 10 z poważnym przeprojektowaniem interfejsu, a nie radykalnie nowy system operacyjny.

Tak jak poprzednio, system operacyjny Windows 11 jest podzielony na dwa główne obozy: Home i Pro. Wydawane są również bardziej wyspecjalizowane wersje tego systemu operacyjnego (Education, Enterprise, Mixed Reality itp.).

- Windows 11 Home. Podstawowa wersja systemu do użytku na komputerze domowym lub laptopie. Obsługuje pracę tylko z jednym procesorem, który może mieć nie więcej niż 64 rdzenie, rozpoznaje do 128 GB pamięci RAM. Do początkowej konfiguracji systemu konieczne jest posiadanie aktywnego połączenia z Internetem.

- Windows 11 Pro. Wersja Pro systemu Windows 11 zawiera szereg zaawansowanych funkcji w porównaniu z wersją domową systemu operacyjnego. W szczególności posiada narzędzia do wirtualizacji sprzętu Hyper-V, izolowane środowisko do bezpiecznego wykonywania programów komputerowych Sandbox, zaawansowane funkcje ochrony cybernetycznej (BitLocker, WIP) oraz usługę Active Directory do integracji w jedną sieć z innymi urządzeniami (drukarkami, serwerami i inne komputerami). System można skonfigurować za pomocą konta lokalnego bezpośrednio na komputerze.

Osobno należy zauważyć, że wcześniejsze wersje Windows - Windows 8 (8.1) i Windows 7 - są uważane za całkowicie przestarzałe, są niezwykle rzadkie, a nawet w takich przypadkach zwykle zakładają możliwość bezpłatnej aktualizacji do najnowszych wersji systemu operacyjnego firmy Microsoft.

- Linux. System operacyjny opracowany i utrzymywany przez społeczność programistów na całym świecie. W przeciwieństwie do systemu Windows jest darmowy, podczas gdy w wielu funkcjach nie jest gorszy: ma własny interfejs graficzny i dość obszerny zestaw oprogramowania do rozwiązywania różnych zadań (w tym roboczych). Linux może być nieco trudny do opanowania dla nieprzyzwyczajonego i niedoświadczonego użytkownika, zwłaszcza dla takiego, który miał do czynienia głównie z systemem Windows; jednak wersje preinstalowane są zazwyczaj dość „przyjazne” i proste. Jednocześnie otwarty kod źródłowy daje doświadczonym entuzjastom szerokie możliwości dostosowania systemu i napisania własnego oprogramowania. Jednoznaczną wadą systemu operacyjnego Linux jest to, że dla niego jest dostępnych mniej gier i specjalistycznego oprogramowania niż dla Windows.

- macOS. Zastrzeżony system operacyjny Apple tylko dla komputerów Mac. Jest uważany za bardziej niezawodny i stabilny niż Windows, ale powód tego jest dość konkretny: macOS jest używany na stosunkowo ograniczonej liczbie urządzeń i znacznie łatwiej jest go zoptymalizować pod kątem konkretnego sprzętu. Warto również zauważyć, że aktualizacje systemu są publikowane regularnie i są dostępne bezpłatnie dla wszystkich komputerów Mac, które spełniają wymagania systemowe. MacOS doskonale nadaje się do „ogólnego profesjonalnego” użytku, w tym do zadań takich jak układ, projektowanie i edycja wideo. Ponadto w ostatnich latach system jest coraz bardziej integrowany z mobilnym systemem operacyjnym iOS, co w szczególności pozwala na łatwe przenoszenie zadań roboczych z komputera stacjonarnego na smartfon/tablet i odwrotnie. Istnieje jednak stosunkowo niewiele wysoce wyspecjalizowanego oprogramowania i gier dostępnych dla systemu macOS.

- DOS. System operacyjny z podstawową funkcjonalnością, bez interfejsu graficznego i sterowania z wiersza poleceń. W praktyce służy tylko do ogólnej kontroli wydajności komputera i uruchamiania instalatorów z pełnoprawnymi systemami operacyjnymi, w przypadku innych zadań używać DOS nie ma sensu.

Bardziej specyficzne opcje preinstalowanego systemu operacyjnego na nowoczesnych komputerach obejmują między innymi:

- Android. System pierwotnie zaprojektowany dla urządzeń mobilnych i zoptymalizowany przede wszystkim pod kątem sterowania za pomocą ekranu dotykowego. W związku z tym jest rzadko używany w komputerach stacjonarnych, a także w dość nietypowej odmianie urządzeń - komputerach All-In-One (patrz „Rodzaj”), które przypominają powiększone tablety (aż do możliwości trzymania takiego urządzenia na kolanach podczas pracy). Jednak głównym powodem niskiej popularności są nawet nie te cechy techniczne, ale fakt, że ogólnie Android jest przeznaczony bardziej do użytku rozrywkowego i raczej słabo nadaje się do zadań biznesowych, edukacyjnych i innych podobnych.

- Windows Embedded Standard 7E 32. Specjalistyczna edycja systemu Windows 7 (patrz niżej), używana w szczególności w cienkich klientach (patrz „Rodzaj”); nie jest przeznaczony dla tradycyjnych komputerów stacjonarnych.

- HP Smart Zero Technology. Kolejny system operacyjny dla cienkich klientów - w tym przypadku opracowany przez HP i instalowany głównie w komputerach tej marki.
Qbox I21xx często porównują