Polska
Katalog   /   Komputery   /   Komputery stacjonarne

Porównanie Berloga PC Field vs It-Blok Game Ryzen 3 1200 D

Dodaj do porównania
Berloga PC (Field)
It-Blok Game (Ryzen 3 1200 D)
Berloga PC FieldIt-Blok Game Ryzen 3 1200 D
od 1 856 zł
Produkt jest niedostępny
od 1 420 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajgamingowygamingowy
Format obudowy
Midi Tower /Golden Field Game 3317B/
Midi Tower
Procesor
Chipset
AMD A320 /ASRock A320M-DVS R4.0/
AMD A320
Rodzajdesktopowydesktopowy
SeriaRyzen 3Ryzen 3
Model12001200
Nazwa kodowaSummit Ridge (Zen)
Liczba rdzeni44
Liczba wątków4
Częstotliwość taktowania3.1 GHz3.1 GHz
Częstotliwość TurboBoost / TurboCore3.4 GHz3.4 GHz
Pamięć RAM
Pojemność pamięci RAM
8 GB /HMA81GU6JJR8N-VK/
8 GB
Rodzaj pamięciDDR4DDR4
Częstotliwość taktowania2666 MHz2400 MHz
Liczba banków22
Maksymalna obsługiwana pojemność32 GB32 GB
Karta graficzna
Rodzaj karty graficznejdedykowanadedykowana
Model karty graficznej
Radeon RX 470 /SAPPHIRE NITRO RX 470/
GeForce GTX 1050
Pojemność pamięci VRAM4 GB2 GB
Rodzaj pamięciGDDR5GDDR5
Dysk
Rodzaj dyskuHDD+SSDHDD
Pojemność dysku500 GB1000 GB
Prędkość obrotowa7200 obr./min
Pojemność drugiego dysku120 GB
Liczba wewnętrznych zatok 3.5"
/+3 przedziały 2,5 cala/
Tylny panel
Złącza
VGA
DVI
wyjście HDMI
DisplayPort
 
 
 
 
PS/21 szt.
USB 2.02 szt.
USB 3.2 gen14 szt.
Przedni panel
Napędbrakbrak
Liczba zewnętrznych zatok 5.25"2 szt.
mini-Jack (3,5 mm)
USB 2.01 szt.1 szt.
USB 3.2 gen11 szt.1 szt.
Multimedia
LAN (RJ-45)brak1 Gb/s
Wi-Fibrakbrak
Dane ogólne
Rodzaj podświetleniaobudowa z podświetleniem
Kolor podświetleniaRGB
Moc zasilacza
400 W /Chieftec APB-400B8/
500 W
Preinstalowany system operacyjnybez systemu operacyjnegoWindows 10 Home
Materiał obudowystalstal
Wymiary (WxSxG)390x188x372 mm430x206x463 mm
Kolor obudowy
Data dodania do E-Katalogpaździernik 2019maj 2018

Nazwa kodowa

Nazwa kodowa procesora, dołączonego do PC.

Parametr ten przede wszystkim charakteryzuje generację, do której należy procesor i zastosowaną w nim mikroarchitekturę. Jednocześnie do tej samej mikroarchitektury/generacji mogą należeć układy o różnych nazwach kodowych; w takich przypadkach różnią się one innymi parametrami - ogólnym pozycjonowaniem, przynależnością do określonej serii (patrz wyżej), obecnością/brakiem niektórych określonych funkcji itp.

Obecnie wśród procesorów Intela aktualne są układy o następujących nazwach kodowych: Coffee Lake (8. generacja), Coffee Lake (9. generacja), Comet Lake (10. generacja) Rocket Lake (11. generacja), Alder Lake (12. generacja), Raptor Lake (13. generacja), Raptor Lake-S (14. generacja). W przypadku AMD lista wygląda następująco: Zen+ Picasso (3. generacja), Zen2 Matisse (3. generacja), Zen2 Renoir (4. generacja), Zen 3 Cezanne (5. generacja), Zen 3 Vermeer (5. generacja), Zen 4 Raphael (6. generacja).

Liczba wątków

Liczba wątków obsługiwanych przez procesor z zestawu komputera.

Wątek w tym przypadku to sekwencja poleceń wykonywanych przez rdzeń. Początkowo każdy pojedynczy rdzeń może pracować tylko z jedną taką sekwencją. Jednak wśród nowoczesnych procesorów pojawia się coraz więcej modeli, w których liczba wątków jest dwukrotnie większa niż liczba rdzeni. Oznacza to, że procesor korzysta z technologii wielowątkowości, a każdy rdzeń pracuje z dwiema sekwencjami poleceń: gdy w jednym wątku występują przerwy, rdzeń przełącza się na inny i odwrotnie. Pozwala to znacznie zwiększyć wydajność bez zwiększania częstotliwości taktowania i rozpraszania ciepła, jednak takie procesory są droższe niż jednowątkowe odpowiedniki.

Częstotliwość taktowania

Częstotliwość taktowania pamięci RAM dostarczanej w zestawie z komputerem. Jest to jeden z parametrów, które określają możliwości pamięci RAM: przy tej samej pojemności i typie pamięci (patrz wyżej) wyższa częstotliwość taktowania będzie oznaczać wyższą wydajność. Co prawda, takie szczegóły rzadko są wymagane przez zwykłego użytkownika, ale są ważne dla entuzjastów i profesjonalistów.

Zauważ również, że wskaźnik ten może być użyty do określenia możliwości uaktualnienia systemu: płyta główna będzie mogła normalnie pracować z kośćmi o tej samej lub niższej częstotliwości taktowania, ale kompatybilność z szybszą pamięcią powinna być wyjaśniona osobno.

Model karty graficznej

 

Pojemność pamięci VRAM

Pojemność własnej pamięci dostarczonej na dedykowanej karcie graficznej (patrz „Typ karty graficznej”).

Im większa jest ta pojemność, tym mocniejsza i bardziej zaawansowana jest karta VRAM, tym lepiej radzi sobie ze złożonymi zadaniami, a zatem więcej kosztuje. Obecnie pojemności 2 GB i 3 GB są uważane za dość skromne, 4 GB za niezłe, 6 GB i 8 GB są dość solidne, a ponad 8 GB oznacza, że mamy wyspecjalizowany komputer zaprojektowany z myślą o maksymalnej wydajności graficznej.

Rodzaj dysku

Rodzaj pamięci masowej, standardowo zainstalowanej w komputerze.

Zwróć uwagę, że wiele komputerów stacjonarnych pozwala uzupełnić pamięć masową z zestawu lub nawet całkowicie ją wymienić, jednak wygodniej jest początkowo kupić odpowiednią konfigurację i nie zawracać sobie głowy ponownym wyposażeniem. Pod względem typów, tradycyjne dyski twarde (HDD) w dzisiejszych czasach coraz częściej ustępują miejsca półprzewodnikowym modułom SSD. Ponadto dość popularne są kombinacje HDD+SSD (m.in. z wykorzystaniem zaawansowanych technologii Intel Optane i Fusion Drive) i nowości SSD+SSD. Natomiast rozwiązania takie jak SSHD i eMMC prawie wyszły z użytku. Rozpatrzmy te warianty bardziej szczegółowo:

- HDD. Klasyczny twardy dysk magnetyczny. Kluczową zaletą takich dysków jest ich niski koszt w przeliczeniu na jednostkę pojemności - pozwala to na tworzenie pojemnych i jednocześnie niedrogich pamięci masowych. Dyski HDD jednak są zauważalnie gorsze od dysków SSD pod względem szybkości działania, a także nie tolerują uderzeń i wstrząsów. W związku z tym tego typu dyski są coraz rzadziej używane w czystej postaci – znacznie częściej można spotkać kombinację dysku twardego z modułem SSD (patrz niżej).

- SSD. Napęd półprzewodnikowy zbudowany w oparciu o pamięć fl...ash. Przy tej samej pojemności dysk SSD jest znacznie droższy niż dysk HDD, jednak jest to uzasadnione wieloma zaletami. Po pierwsze, takie dyski są znacznie szybsze niż dyski twarde; konkretna wydajność może być różna (w zależności od rodzaju pamięci, interfejsu połączenia itp.), jednak nawet niedrogie dyski SSD przewyższają zaawansowane dyski HDD pod tym względem. Po drugie, pamięć półprzewodnikowa nie zawiera ruchomych części, co zapewnia jednocześnie kilka zalet: lekkość, kompaktowość, odporność na wstrząsy i niski pobór mocy. A koszt takiej pamięci stale spada wraz z postępem technologii. Dlatego coraz więcej nowoczesnych komputerów stacjonarnych jest wyposażonych właśnie w takie dyski i mogą to być konfiguracje na każdym poziomie – od niedrogich po topowe.

- HDD+SSD. Obecność w jednym systemie jednocześnie dwóch dysków - HDD i SSD. Każda z tych odmian została szczegółowo opisana powyżej; a ich połączenie w jednym systemie pozwala połączyć zalety i częściowo zrekompensować wady. Na przykład na dysku SSD (który zwykle jest o dość małej pojemności) można przechowywać pliki systemowe i inne dane, dla których ważna jest szybkość dostępu (na przykład aplikacje do pracy); a dysk HDD dobrze nadaje się do dużych ilości informacji, które nie wymagają szczególnie dużej szybkości (typowym przypadkiem są pliki wideo i inne treści multimedialne). Ponadto moduł półprzewodnikowy może być używany nie jako oddzielna pamięć masowa, jednak jako pośrednia pamięć podręczna w celu przyspieszenia dysku twardego; jednak zazwyczaj wymaga to specjalnych ustawień oprogramowania (podczas gdy tryb „dwóch oddzielnych dysków” jest najczęściej dostępny domyślnie).
Podkreślamy również, że w tym przypadku chodzi o „zwykłe” moduły SSD, które nie należą do serii Optane i Fusion Drive; cechy tych serii są szczegółowo opisane poniżej.

- HDD+Optane. Połączenie tradycyjnego dysku twardego z dyskiem SSD z serii Intel Optane. Aby uzyskać więcej informacji na temat ogólnych cech tej kombinacji, zobacz „HDD+SSD” powyżej. Tutaj zauważamy, że dyski Optane różnią się od innych dysków SSD specjalną trójwymiarową strukturą komórek pamięci (technologia 3D Xpoint). Pozwala to na dostęp do danych na poziomie pojedynczych komórek i bez dodatkowych operacji, co przyspiesza przetwarzanie i zmniejsza opóźnienia, a także pozytywnie wpływa na żywotność pamięci. Druga różnica polega na tym, że Optane jest zwykle używany nie jako odrębny dysk, jednak jako pomocniczy bufor (pamięć podręczna) dla głównego dysku twardego, mający na celu zwiększenie szybkości działania. W tym przypadku oba dyski są postrzegane przez system jako jedno urządzenie. Wadą tego typu dysków SSD jest tradycyjnie dość wysoka cena; warto również zauważyć, że jego wyższość jest najbardziej zauważalna przy stosunkowo niskich obciążeniach (choć nie zanika całkowicie wraz ze wzrostem obciążenia).

- HDD+Fusion Drive. Odmiana pakietu „HDD+SSD” (patrz wyżej), używana wyłącznie w komputerach Apple i zoptymalizowana pod kątem zastrzeżonego systemu operacyjnego macOS. Jednak bardziej słuszne byłoby porównanie tej opcji z kombinacją „HDD+Optane” (również opisaną powyżej): na przykład oba napędy są postrzegane przez system jako całość, a moduł Fusion Drive jest również używany jako szybka pamięć podręczna dysku twardego. Jednak są też znaczące różnice. Po pierwsze, Fusion Drive ma znaczną pojemność i jest używany nie tylko jako bufor usług, jednak także jako część pełnowartościowego dysku - do trwałego przechowywania danych. Po drugie, całkowita pojemność całego pakietu odpowiada w przybliżeniu sumie pojemności obu dysków (minus kilka gigabajtów „usługowych”). Ten rodzaj pamięci nie jest tani, jednak wydajność i wygoda są całkowicie warte swojej ceny.

- SSHD. Tak zwana pamięć hybrydowa: urządzenie, które łączy w jednej obudowie dysk twardy i małą pamięć podręczną SSD. Jakiś czas temu rozwiązanie to było dość popularne, jednak teraz prawie nigdy się nie pojawia, wypierając bardziej praktyczną opcję - różne typy HDD+SSD.

- eMMC. Rodzaj pamięci półprzewodnikowej pierwotnie opracowany dla przenośnych gadżetów, takich jak smartfony i tablety. Od SSD różni się, z jednej strony, niższym kosztem i niskim zużyciem energii, z drugiej zaś — stosunkowo niską szybkością i niezawodnością. Z tego powodu ten rodzaj pamięci jest używany niezwykle rzadko - w szczególności w pojedynczych modelach mikrokomputerów i cienkich klientów (patrz „Rodzaj”).

- HDD+eMMC. Połączenie dysku twardego (HDD) i modułu półprzewodnikowego eMMC. Te typy pamięci zostały szczegółowo opisane powyżej; tutaj zauważamy, że ta opcja jest niezwykle rzadka, używana w dość specyficznych urządzeniach - komputerach All-In-One (patrz „Rodzaj”) z funkcją urządzenia konwertowalnego, gdzie ekran jest zdejmowanym tabletem, z którego można korzystać autonomicznie. W takim tablecie zwykle instalowany jest moduł eMMC, a dysk twardy jest umieszczony w części stacjonarnej. Możliwa jest również inna opcja - pakiet podobny do HDD+SSD (patrz wyżej), gdzie eMMC służy do obniżenia kosztów i/lub zużycia energii.

- SSD+eMMC. Kolejna kombinacja dwóch typów pamięci opisanych powyżej. Stosowano go w pojedynczych komputerach All-In-One i nettopach - głównie w celu obniżenia kosztów; dziś ta opcja prawie nie jest używana.

Pojemność dysku

Pojemność głównego dysku dostarczonego w zestawie z komputerem. W przypadku modeli z kombinowanymi pamięciami masowymi (na przykład HDD+SSD, patrz „Rodzaj pamięci masowej”) za główny w tym przypadku uważany jest większy dysk twardy; a jeśli w zestawie znajdują się dwa dyski HDD, to zwykle są one o takiej samej pojemności.

Z czysto praktycznego punktu widzenia im więcej danych może pomieścić dysk, tym lepiej. Tak więc wybór według tego wskaźnika zależy głównie od ceny: duża pojemność nieuchronnie oznacza wyższy koszt. Ponadto pamiętaj, że moduły SSD w przeliczeniu na gigabajt są znacznie droższe niż dyski twarde; tak więc pod względem pojemności i kosztów mogą być porównywane tylko dyski tego samego typu.

Jeśli chodzi o konkretną pojemność, to wskaźniki 250 GB lub mniej we współczesnych komputerach stacjonarnych można znaleźć głównie wśród dysków SSD. Dyski twarde tej wielkości prawie nigdy nie są używane, dla nich pojemności od 250 do 500 GB są nadal uważane za raczej skromne. 501 – 750 GB to całkiem dobra wartość jak na dysk SSD i jest najczęściej używana wśród nich. 751 GB – 1 TB to imponująca liczba jak na dysk SSD i średni poziom dla dysków twardych, 1,5 – 2 TB to bardzo solidna pojemność nawet jak na HDD. A bardzo dużą pojemność – ponad 2 TB – paradoksa...lnie można znaleźć nawet wśród czystych dysków SSD: takie dyski są instalowane w wysokiej klasy stacjach roboczych, gdzie prędkość jest nie mniej ważna niż pojemność.

Prędkość obrotowa

Nominalna prędkość obrotowa osi dysku twardego (patrz „Rodzaj pamięci masowej”) zainstalowanego w komputerze.

Talerze dysków twardych w stanie roboczym stale się obracają. Standardowe opcje prędkości obrotowej we współczesnych komputerach to 5400 i 7200 obr./min (revolutions per minute — obrotów na minutę). Większa prędkość obrotowa przyspiesza dostęp do danych, ale znacząco wpływa na koszt dysku. Ponadto „szybkie” dyski są uważane za mniej niezawodne (co często rekompensowane jest różnymi poprawkami konstrukcyjnymi, ale mają one również wpływ na cenę).

Pojemność drugiego dysku

Pojemność dodatkowego dysku zainstalowanego w komputerze.

Parametr ten dotyczy przede wszystkim konfiguracji z różnymi typami nośników. Tak więc w pakietach HDD+SSD i HDD+eMMC dysk twardy jest uważany za dysk główny, a ten punkt wskazuje na pojemność modułu półprzewodnikowego. W konfiguracjach SSD+eMMC za drugi dysk jest uważany eMMC - jest mniej pojemny i pełni funkcję pomocniczą. Istnieją modele PC z dwoma dyskami twardymi, ale w takich przypadkach dyski mają zwykle taką samą pojemność i nie ma dla nich znaczenia, który z nich jest uważany za główny.

Jeśli mówimy o konkretnych liczbach, to pojemność do 128 GB można uznać za stosunkowo niewielką, a 128 GB lub więcej - solidną. Aby uzyskać więcej informacji na temat pojemności, zobacz „Pojemność dysku” powyżej.
Dynamika cen
Berloga PC często porównują
It-Blok Game często porównują