Powłoka ekranu
We współczesnych monitorach mogą być stosowane wyświetlacze z błyszczącą i matową powierzchnią ekranu. W niektórych przypadkach preferowana jest
matowa powierzchnia ze względu na fakt, że na
błyszczącym ekranie po wystawieniu na działanie jasnego światła pojawia się zauważalny odblask, czasami zakłócający oglądanie. Z drugiej strony, błyszczące ekrany oferują lepszą jakość obrazu, wyższą jasność i bardziej nasycone kolory.
Na skutek rozwoju technologii na rynku pojawiły się
monitory ze specjalną powłoką antyrefleksyjną, która, zachowując wszystkie zalety błyszczącego ekranu, wytwarza znacznie mniej widoczne odblaski w jasnym świetle otoczenia.
Czas reakcji (GtG)
Czas, jaki potrzebuje każdy pojedynczy punkt na monitorze, aby przełączyć się z jednego stanu do drugiego. Im
krótszy czas reakcji, tym szybciej matryca reaguje na sygnał sterujący, tym mniejsze opóźnienie i lepsza jakość obrazu w scenach dynamicznych.
Zwróć uwagę, że w danym przypadku stosowana jest metoda gray-to-gray (czas uruchomienia od 10% szarego do 90%). Warto zwrócić uwagę na parametr ten, jeśli monitor kupuje się do dynamicznych gier, oglądania filmów i innych zastosowań związanych z szybkim ruchem na ekranie. I nawet w takich przypadkach wystarczy szybkość reakcji 8 ms; dalsze skrócenie czasu odpowiedzi nie wpływa na jakość postrzeganego obrazu.
Głębia koloru
Głębia koloru obsługiwana przez monitor.
Parametr ten charakteryzuje liczbę odcieni, które może wyświetlić ekran. I tu warto przypomnieć, że obraz we współczesnych monitorach budowany jest w oparciu o 3 podstawowe kolory - czerwony, zielony, niebieski (schemat RGB). Liczba bitów jest wskazana nie dla całego ekranu, ale dla każdego koloru podstawowego. Na przykład 6 bitów (minimalna głębia kolorów dla współczesnych monitorów) oznacza, że ekran jest w stanie wyprodukować 2^6, czyli 64 odcienie czerwieni, zieleni i koloru niebieskiego; całkowita liczba odcieni wyniesie 64*64*64 = 262 144 (0,26 mln).
8-bitowa głębia kolorów (256 odcieni dla każdego koloru podstawowego) daje już łącznie 16,7 mln kolorów; a dzisiejsze najbardziej zaawansowane monitory obsługują
10-bitowe kolory, umożliwiając pracę z ponad miliardem odcieni.
Osobna wzmianka dotyczy ekranów z obsługą technologii FRC; obecnie można znaleźć modele oznaczone „
6 bit + FRC” i „
8 bit + FRC”. Technologia ta została opracowana w celu poprawy jakości obrazu w sytuacjach, gdy przychodzący sygnał wideo ma większą głębię kolorów niż ekran - na przykład gdy 10-bitowe wideo jest podawane na 8-bitową matrycę. Jeśli taki ekran obsługuje FRC, obraz na nim będzie zauważalnie lepszy niż na zwykłym 8-bitowym monitorze (choć nieco gorszy niż na pełnoprawnym 10-bitowym, ale ekrany „8
...-bit + FRC” są dużo tańsze).
Wysoka głębia kolorów jest ważna przede wszystkim w przypadku profesjonalnej pracy z grafiką i innych zadań wymagających dużej dokładności odwzorowania barw. Z drugiej strony, takie cechy znacząco wpływają na koszt monitora. Ponadto warto pamiętać, że jakość odwzorowania barw zależy nie tylko od głębi kolorów, ale także od innych parametrów - w szczególności od przestrzeni barw (patrz poniżej).Przestrzeń barw (NTSC)
Przestrzeń barw monitora według modelu kolorów NTSC.
Dowolna przestrzeń barw jest wskazywana w procentach, ale nie w odniesieniu do całej gamy widocznych kolorów, ale w odniesieniu do warunkowej przestrzeni barw (modelu kolorów). Wynika to z faktu, że żaden współczesny ekran nie jest w stanie wyświetlić wszystkich kolorów widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości monitora, tym lepsze odwzorowanie barw.
W szczególności NTSC jest jednym z pierwszych modeli kolorów stworzonych w 1953 r. wraz z pojawieniem się telewizji kolorowej. Nie jest używany do produkcji nowoczesnych monitorów, ale często jest używany do ich opisu i porównania. NTSC obejmuje szerszą przestrzeń barw niż standard sRGB w sprzęcie komputerowym: na przykład pokrycie tylko 85% w NTSC daje około 110% w sRGB. A więc przestrzeń barw dla tego modelu podawana jest najczęściej w celach reklamowych - jako potwierdzenie wysokiej klasy monitora; bardzo dobry wskaźnik w takich przypadkach to
75% lub więcej.
Przestrzeń barw (sRGB)
Przestrzeń barw monitora według modelu kolorów sRGB.
Każdą przestrzeń barw podaje się w procentach, ale nie w odniesieniu do całej gamy widocznych kolorów, ale w odniesieniu do warunkowej przestrzeni barw (modelu kolorów). Wynika to z faktu, że żaden współczesny ekran nie jest w stanie wyświetlić wszystkich kolorów widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości monitora, tym lepsze odwzorowanie barw.
Obecnie sRGB jest de facto standardowym modelem kolorów dla sprzętu komputerowego; jest używany przy projektowaniu i produkcji większości kart graficznych. W przypadku telewizji stosowany jest standard Rec. o podobnych parametrach. Jednocześnie modele te są identyczne w gamie kolorystycznej, a procent pokrycia według nich okazuje się taki sam. W najbardziej zaawansowanych monitorach może
osiągnąć, a nawet przekroczyć 100%; to właśnie te wartości są uważane za niezbędne w przypadku ekranów z najwyższej półki, m.in. profesjonalnych.
Przestrzeń barw (Adobe RGB)
Przestrzeń barw monitora według modelu kolorów Adobe RGB.
Dowolna przestrzeń barw jest wskazywana w procentach, ale nie w odniesieniu do całej gamy widocznych kolorów, ale w odniesieniu do warunkowej przestrzeni barw (modelu kolorów). Wynika to z faktu, że żaden współczesny ekran nie jest w stanie wyświetlić wszystkich kolorów widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości monitora, tym lepsze odwzorowanie barw.
W szczególności model kolorów Adobe RGB został pierwotnie opracowany do użytku w druku; zakres kolorów, które obejmuje, odpowiada możliwościom profesjonalnego sprzętu poligraficznego. W związku z tym wsparcie dla tego modelu i szeroka przestrzeń barw zgodnie z nim są ważne przede wszystkim, jeśli monitor jest używany do projektowania i układu wysokiej jakości produktów drukowanych. W najbardziej zaawansowanych ekranach wskaźnik ten może wynosić
99% lub więcej. Jednocześnie zauważamy, że Adobe RGB jest szerszy niż popularny sRGB, a wartości procentowe dla tego modelu są mniejsze: na przykład 99% dla RGB często daje tylko około 87% dla Adobe RGB.
Transmisja wideo
—
VGA. Złącze przeznaczone do przesyłania analogowych sygnałów wideo już w czasach monitorów CRT (specjalnie do nich). Dziś jest uważane za przestarzałe i stopniowo wycofuje się z użytkowania - w szczególności ze względu na małą przepustowość, która nie pozwala w pełni współpracować z treściami HD, a także podwójną konwersję sygnału przy zastosowaniu VGA w monitorach LCD (co może stać się potencjalnym źródłem zakłóceń).
—
DVI. Złącze do przesyłania sygnału wideo zaprojektowane specjalnie dla urządzeń LCD, w tym monitorów. Chociaż skrót DVI pierwotnie oznacza „cyfrowy interfejs wideo”, interfejs ten umożliwia również analogową transmisję danych. W rzeczywistości istnieją trzy główne typy DVI: analogowe, kombinowane i cyfrowe. Pierwsza odmiana w nowoczesnym sprzęcie komputerowym jest prawie nieużywana (funkcję tę pełni tak naprawdę złącze VGA), a złącze czysto cyfrowe -
DVI-D - jest wskazane osobno w naszym katalogu (patrz poniżej). Dlatego jeśli specyfikacja monitora wskazuje „po prostu DVI” - najprawdopodobniej chodzi o kombinowane złącze DVI-I. Pod względem specyfikacji analogowego sygnału wideo jest ono zbliżone do opisanego powyżej VGA (a nawet kompatybilne z nim poprzez najprostszy adapter), pod względem możliwości cyfrowych - do DVI-D (jednokanałowego, a nie Dual Link). Jednak ze względu na rozprzestrzenianie się czysto cyfrowych standardów, DVI-I jest coraz rzadz
...iej spotykane.
— DVI-D. Odmiana interfejsu DVI opisanego powyżej, obsługująca wyłącznie cyfrowy format sygnału wideo. Standardowy (Single Link) interfejs DVI-D umożliwia transmisję wideo w rozdzielczościach do 1920x1080 przy częstotliwości odświeżania 75 Hz lub 1920x1200 przy częstotliwości odświeżania 60 Hz, co już wystarcza do pracy ze współczesnymi rozdzielczościami aż do Full HD. Dodatkowo istnieje dwukanałowa (Dual Link) wersja tego złącza, która ma zwiększoną przepustowość i pozwala na pracę z rozdzielczościami do 2560x1600 (przy 60 Hz; lub 2048x1536 przy 75 Hz). Odpowiednio konkretny rodzaj DVI-D zależy od rozdzielczości monitora. W takim przypadku jednokanałowy ekran można podłączyć do dwukanałowej karty graficznej, ale nie odwrotnie. Zauważamy również, że sytuacja jest podobna w przypadku złączy: porty Single Link i Dual Link różnią się nieco konstrukcją, a jednokanałowy kabel jest kompatybilny z dwukanałowym wejściem/wyjściem, ale znowu nie odwrotnie.
— DisplayPort. Interfejs pierwotnie stworzony do transmisji wideo (jednak można go wykorzystać także do przesyłania sygnałów audio – w tym DisplayPort działa podobnie jak HDMI). Występuje w wielu modelach monitorów. Należy pamiętać, że monitory z wejściami DisplayPort są również kompatybilne z wyjściami Thunderbolt (za pośrednictwem adaptera).
Konkretne możliwości tego złącza zależą od jego wersji. We współczesnych monitorach spotyka się następujące wersje:
- v.1.2. Najwcześniejsza z rozpowszechnionych w naszych czasach wersji, wydana w 2010 roku. To właśnie w niej po raz pierwszy wprowadzono takie funkcje, jak obsługa 3D i możliwość łączenia szeregowego wielu ekranów. Wersja 1.2 umożliwia przesyłanie wideo 5K z prędkością 30 klatek na sekundę, możliwa jest również praca z wyższymi rozdzielczościami (do 8K), ale z pewnymi ograniczeniami.
- v.1.3. Wersja DisplayPort wydana w 2014 roku. Ma półtora razy większą przepustowość niż v.1.2 i pozwala na transmisję wideo 8K przy 30 kl./s, 5K - przy 60 kl./s i 4K - przy 120 kl./s. Dodatkowo ta wersja posiada funkcję Dual-mode, która umożliwia podłączenie do wyjść HDMI i DVI za pomocą najprostszych adapterów pasywnych.
- v.1.4. W tej wersji maksymalna liczba klatek na sekundę przy pracy z jednym ekranem wzrosła do 120 kl/s dla standardu 8K i do 240 kl/s dla standardów 4K i 5K (dane mają być przesyłane z kompresją z wykorzystaniem technologii DSC – Display Stream Compression). Inne funkcje obejmują kompatybilność z HDR10 i możliwość jednoczesnego przesyłania do 32 kanałów audio.
- v.2.1. Wersja 2022 roku wykorzystująca tę samą specyfikację warstwy fizycznej co USB4. Przepustowość interfejsu została podwojona w porównaniu z wersją 1.4 (do 80 Gbit/s, z czego 77,37 Gbit/s jest dostępne do przesyłania danych). Przy tym realizowano obsługę podłączenia wyświetlaczy o rozdzielczościach do 16K przy 60 kl./s, 8K przy 120 kl./s, 4K przy 240 Hz i 2K przy 480 Hz (bez dodatkowego wykorzystania technologii DSC – Display Stream Compression). Kable DP40 (40 Gb/s) mogą być dłuższe niż dwa metry, a kable DP80 (80 Gb/s) mogą mieć długość ponad jednego metra.
— Mini Display Port. Zmniejszona wersja złącza DisplayPort opisanego powyżej, używana głównie w laptopach; szczególnie popularna w laptopach Apple. Ostatnio pojawił się trend zastępowania Mini Display Port uniwersalnym interfejsem Thunderbolt; jednak ten interfejs działa przez to samo złącze i zapewnia te same możliwości.
Innymi słowy, monitory można podłączyć do Thunderbolt (wersji 1 i 2) za pomocą standardowego kabla miniDisplayPort, bez użycia adapterów (w przypadku v3 adapter jest nadal potrzebny).
— HDMI. Interfejs HDMI został pierwotnie zaprojektowany do przesyłania wideo o wysokiej rozdzielczości i wielokanałowego dźwięku w postaci cyfrowej za pomocą jednego kabla. Jest to obecnie najpopularniejszy z interfejsów podobnego przeznaczenia; wyjścia HDMI są praktycznie obowiązkowe zarówno w komputerowych kartach graficznych, jak i w centrach multimedialnych, odtwarzaczach DVD/Blu-ray i innych podobnych urządzeniach.
Obecność w monitorze kilku wyjść danego typu pozwala na podłączenie go do kilku źródeł sygnału jednocześnie — na przykład do komputera i tunera telewizji satelitarnej. W ten sposób możesz przełączać się między źródłami za pomocą ustawień nie tracąc czasu na bawienie się z kablami, a także użyć funkcji PBP.
Przy tym sam port ma różne wersje, a najbardziej popularne obecnie wersję to:
- — v.1.4. Najwcześniejsza z aktywnie używanych obecnie wersja; pojawiła się w 2009 roku. Obsługuje rozdzielczości do 4096x2160 przy 24 kl./s, a w standardzie Full HD (1920x1080) liczba klatek na sekundę może osiągać 120 kl./s; możliwa jest także transmisja wideo 3D.
-
— v.2.0. Wersja wprowadzona w 2013 roku jako olbrzymia aktualizacja standardu HDMI. Obsługuje wideo 4K z szybkością do 60 kl./s (stąd nazwa HDMI UHD), a także do 32 kanałów audio i do 4 strumieni audio jednocześnie. Ta wersja obsługuje także ultrawide 21:9.
-
— v.2.1. Dość znacząca aktualizacja w stosunku do wersji 2.0, wprowadzona pod koniec 2017 roku. Dalsze zwiększenie przepustowości umożliwiło obsługę rozdzielczości do 8K przy 120 kl./s włącznie. Wprowadzono także ulepszenia dotyczące pracy z HDR. Należy zaznaczyć, że do korzystania ze wszystkich funkcji HDMI v 2.1 potrzebne są kable HDMI Ultra High Speed, chociaż podstawowe funkcje są też dostępne w przypadku zwykłych kabli.
— USB C (DisplayPort AltMode). Inna odmiana interfejsu USB używanego do pracy z sygnałem wideo. Cechuje się małymi rozmiarami (niewiele większymi od microUSB) oraz posiada dwustronną konstrukcję, która pozwala na podłączenie wtyczki z dowolnej strony - to sprawia, że Type C jest wygodniejszy niż poprzednie standardy. Jednocześnie zauważamy, że taki monitor można początkowo zaprojektować do podłączenia do wyjścia USB C (przynajmniej taki kabel adaptera może być dostarczony w zestawie), ten punkt warto wyjaśnić osobno.
— Interfejs Thunderbolt. Thunderbolt to protokół przesyłania danych (stosowany w urządzeniach Apple), którego przepustowość sięga 40 Gb/s. Sama wtyczka, podobnie jak prędkość, zależy od wersji: Thunderbolt v1 i v2 używają miniDisplayPort (patrz wyżej), monitory z wejściami Thunderbolt niekoniecznie są kompatybilne z oryginalnymi wyjściami miniDisplayPort - warto wyjaśnić tę kompatybilność osobno. Thunderbolt v3 jest oparty na złączu USB C (patrz wyżej).Złącza (opcjonalnie)
-
Wejście mini-Jack (3,5 mm). Wejście audio ze standardowym złączem mini-Jack 3,5 mm. Z reguły wygląda jak gniazdo, do którego podłączona jest wtyczka mini-Jack ze źródła sygnału. Sam sygnał z takiego wejścia może być doprowadzony albo do wbudowanych głośników monitora, albo do wyjścia audio (patrz poniżej).
-
Wyjście mini-Jack (3,5 mm). Analogowe wyjście audio za pomocą standardowego gniazda mini-Jack 3,5 mm. Zwykle jest uniwersalne, można je wykorzystać zarówno do podłączenia słuchawek, jak i jako wyjście
liniowe dla głośników komputerowych lub innej aktywnego sprzętu audio. Obecność gniazda audio na monitorze jest wygodna, ponieważ taki port jest zwykle bliżej użytkownika niż wyjścia karty dźwiękowej i łatwiej jest podłączyć słuchawki lub głośniki bezpośrednio do monitora niż przeciągać przewód do jednostki systemowej.
-
LAN. Standardowe złącze do przewodowego połączenia z sieciami komputerowymi. Obecność takiego wejścia w większości przypadków zmienia monitor w urządzenie sieciowe: każdy użytkownik sieci z odpowiednimi prawami dostępu może wyświetlać na nim obraz. Innym zastosowaniem LAN jest bezpośrednie połączenie z innym urządzeniem. Przykładowo w ten sposób można podłączyć laptopa z wyjściem LAN bez odłączania monitora od komputera stacjonarnego (do którego można go podłączyć np. poprzez interfejs DVI). Niektór
...e szczególnie zaawansowane modele mają wbudowane narzędzia programowe, które umożliwiają korzystanie z sieci lokalnej do przeglądania zawartości urządzeń podłączonych do tej sieci, a nawet korzystanie z niektórych usług internetowych bezpośrednio z monitora, bez korzystania z komputera jako takiego.
- Kompozytowe. Jedno z najprostszych i najpopularniejszych analogowych wejść audio/wideo. Podobnie jak komponentowe, wykorzystuje trzy przewody i w standardowej postaci składa się z trzech złączy RCA; w niektórych monitorach oba interfejsy mogą być nawet realizowane za pomocą jednego zestawu złączy, przełączanych w ustawieniach w tryb „komponentowy” lub „kompozytowy”. Osobliwością tego standardu jest to, że pozwala na przesyłanie zarówno obrazu, jak i dźwięku: jeden z przewodów służy do analogowego sygnału wideo, a dwa pozostałe odpowiadają za lewy i prawy kanał stereo. Co prawda, interfejs kompozytowy jest uważany za przestarzały: ze względu na transmisję wideo jednym kablem jakość i odporność na zakłócenia obrazu są niskie i w ogóle nie ma mowy o rozdzielczościach HD. Z drugiej strony, takie wyjścia są nadal dość popularne w sprzęcie wideo - zarówno nowoczesnym, jak i przestarzałym (jak magnetowidy VHS). Możliwość jednoczesnego podłączenia obrazu i dźwięku jest bardzo wygodna. Jeśli jednak monitor nie ma ani wyjść audio, ani wbudowanych głośników, zwykle dostarcza okrojoną wersję tego złącza - „composite video”, z jednym gniazdem RCA.
- Koncentryczne (S/P-DIF). Wersja elektryczna interfejsu S/P-DIF: przez jedno złącze koncentryczne RCA (tulipan) w postaci cyfrowej jest przesyłany dźwięk, w tym wielokanałowy. Złącze to występuje głównie w wielkoformatowych panelach plazmowych i LCD (patrz „Rodzaj”), gdzie pełni rolę wyjścia do podłączenia zewnętrznych systemów audio - głównie kina domowego i innych zaawansowanych zestawów urządzeń wielokanałowych.
- Liniowe. Interfejs liniowy to standardowy interfejs audio do przesyłania sygnałów audio w formacie analogowym. Ogólnie rzecz biorąc, najpopularniejszym zastosowaniem tego złącza jest przesyłanie dźwięku do aktywnych głośników i/lub zewnętrznego wzmacniacza. Jednak monitory mogą zawierać zarówno wyjścia, jak i wejścia tego typu. W tym sensie interfejs liniowy jest podobny do opisanego powyżej złącza 3,5 mm; ponadto w niektórych modelach właśnie mini-Jack pełni rolę złącza liniowego.
- Optyczne. Inny rodzaj złącza S/P-DIF, oprócz opisanego powyżej wyjścia koncentrycznego. Służy do tego samego celu - do wyprowadzania wielokanałowego dźwięku na zewnętrzny sprzęt audio - jednak wykorzystuje nie kabel elektryczny, ale optyczny (światłowodowy), dzięki czemu takie połączenie absolutnie nie podlega zakłóceniom elektrycznym. Z drugiej strony, z włóknem światłowodowym należy obchodzić się ostrożnie, ponieważ może pękać w wyniku załamań lub silnego nacisku. Warto również zauważyć, że w przeciwieństwie do koncentrycznego, wyjście optyczne znajduje się zarówno w dużych, jak i stosunkowo małych monitorach.
- Port COM (RS-232). Uniwersalny interfejs cyfrowy do przesyłania różnych danych. W monitorach pełni zwykle rolę pomocniczą: pozwala na sterowanie ustawieniami ekranu z podłączonego komputera lub innego urządzenia, a w modelach z ekranami dotykowymi może służyć również do przesyłania danych z czujnika do komputera. Jest znacznie mniej rozpowszechniony niż USB, praktycznie nie jest używany w laptopach, ale ma przewagę w maksymalnej długości kabla - 15 m wobec 5 m.Moc dźwięku
Moc znamionowa głośników zainstalowanych w monitorze (patrz „Wbudowane głośniki”). Im wyższa moc, tym głośniej mogą brzmieć głośniki, tym łatwiej jest pokryć dużą przestrzeń. Jednak w większości przypadków użytkownik znajduje się bezpośrednio przed monitorem i do normalnej słyszalności nie jest wymagana duża głośność. Zatem parametr ten jest krytyczny głównie dla paneli plazmowych i LCD (patrz „Rodzaj”).