Liczba podłączanych urządzeń, do
Największa liczba urządzeń, które można na raz podłączyć do modemu przez Wi-Fi (patrz „Podłączenie”).
Ograniczenie to wynika z faktu, że przetwarzanie zapytań sieciowych z kilku urządzeń na raz wymaga dość dużej ilości zasobów obliczeniowych, a nie jest ich tak dużo w miniaturowej elektronice, takiej jak modemy bezprzewodowe. Jednak nawet niedrogie modele potrafią obsługiwać około 5 – 6 urządzeń, co w większości przypadków jest więcej niż wystarczające; a w bardziej zaawansowanych modemach liczba ta może sięgać 10.
Zasięg
Najdłuższa odległość, przy której wbudowany modem router jest w stanie zapewnić komunikację przez interfejs Wi-Fi (patrz „Połączenie”).
Należy pamiętać, że w praktyce zasięg silnie zależy od wielu czynników niezwiązanych z głównymi cechami modemu: obecności zakłóceń i przeszkód na ścieżce sygnału, charakterystyki modułu Wi-Fi podłączonego urządzenia, stan naładowania baterii w tym urządzeniu lub samego modemu itp. ... Dlatego rzeczywiste wskaźniki zasięgu mogą być zauważalnie niższe niż deklarowane: na przykład podczas pracy przez ścianę zauważalnie się zmniejszają. Jednak ta cecha dość wyraźnie opisuje ogólny „zasięg” urządzenia, a porównania różnych modeli na nim są całkiem do przyjęcia.
Zwracamy również uwagę, że nie zawsze ma sens kupowanie urządzenia o maksymalnym zasięgu działania – choć duży zasięg zapewnia dodatkową wygodę, wymaga dużej mocy nadajnika, co znacznie zwiększa gabaryty i cenę modemu. Dlatego przy wyborze warto kierować się przede wszystkim zamierzonym formatem użytkowania. Na przykład, jeśli potrzebujesz połączenia 3G, aby uzyskać dostęp do Internetu w drodze z tabletu, wystarczy zasięg kilku metrów (co więcej, zmniejszy to prawdopodobieństwo podłączenia się osób postronnych do przenośnego punktu dostępowego). Ale w przypadku instalacji w dużym prywatnym domu warto poszukać modelu „rzeźni”.
Prędkość 4G (LTE)
Prędkość połączenia mobilnego 4G (LTE) obsługiwana przez modem.
Wszystkie współczesne urządzenia LTE są zaliczane do jednej lub drugiej kategorii (
Cat.3,
Cat.4,
Cat.6,
Cat.7,
Cat.9,
Cat.12,
Cat.13,
Cat.16,
Cat.18,
Cat.19,
Cat.20,
Cat.22), od której bezpośrednio zależy prędkość przekazywania danych. W tym punkcie określa się zarówno tę kategorię, jak i konkretne wskaźniki prędkości, ponadto w dwóch parametrach - do pobierania i do wysyłania. Prędkość wysyłania jest zawsze znacznie niższa, jednak biorąc pod uwagę specyfikę mobilnego dostępu do Internetu, szczegół ten zazwyczaj nie jest krytyczny.
Należy pamiętać, że sprzęt z różnymi kategoriami prędkości będzie kompatybilny ze sobą, jednak przepustowość będzie ograniczona możliwościami wolniejszego urządzenia. Warto również wspomnieć, że w tym rozdziale podaje się teoretyczne maksimum; wskaźniki praktyczne mogą być zauważalnie niższe (w zależności od jakości zasięgu, zatłoczenia eteru, cech konkretnej elektroniki).
Technologia transmisji danych
Technologie transmisji danych obsługiwane przez modem.
-
GPRS. Najstarsza obecnie stosowana technologia komunikacyjna. Opracowany jako standard dla sieci komórkowych GSM, który umożliwia przesyłanie danych równolegle z komunikacją głosową i wiadomościami tekstowymi, a także ocenianie dostępu do sieci ilością przesyłanych danych, a nie czasem połączenia (jak w poprzednim CSD standard). W momencie jego powstania był bardzo postępowy, ale teraz jest uważany za całkowicie przestarzały i jest używany tylko w przypadkach, gdy nie można zastosować bardziej zaawansowanych standardów.
-
KRAWĘDŹ. Technologia stworzona jako modyfikacja GPRS opisanej powyżej, która zwiększy przepustowość kanału i poprawi niezawodność komunikacji. Poza tym standard ten jest całkowicie podobny do GPRS pod względem głównych cech praktycznych.
-
W-CDMA. Jeden z najwcześniejszych standardów komunikacyjnych
trzeciej generacji (3G). Jest używany w sieciach formatu UMTS. Jedną z głównych zalet takich sieci jest możliwość budowania sieci w oparciu o istniejącą infrastrukturę GSM. Dlatego UMTS, a konkretnie W-CDMA, jest używany przez wielu operatorów telefonii komórkowej na wczesnych etapach przejścia z 2G na 3G.
-
HSUPA. Technologia komunikacji trzeciej generacji (3G), ewolucja opisanego powyżej W-CDMA.
...Nazwa oznacza „High-Speed Uplink Packet Access” – szybką pakietową transmisję danych w kierunku „od abonenta”. To tak naprawdę opisuje przeznaczenie tej technologii: zwiększa szybkość przesyłania danych z modemu do stacji bazowej, co może być przydatne do niektórych konkretnych zadań - na przykład komunikacji wideo.
- HSDPA. Dalej, po HSUPA, udoskonalenie standardu W-CDMA (patrz wyżej). Należy do sieci trzeciej generacji (3G), ale jest uważany za „rozszerzony” standard, dlatego sieci z obsługą HSUPA można oznaczać jako 3.5G, 3G+ itp. Sama nazwa – „High-Speed Downlink Packet Access” – tłumaczy się jako „szybka transmisja pakietowa danych ze stacji bazowej do urządzenia”.
- HSPA+. Najbardziej zaawansowany obecnie standard komunikacji trzeciej generacji oparty na sieciach UMTS (W-CDMA). Dzięki szeregowi ulepszeń pozwala osiągnąć wyższe prędkości niż opcje opisane powyżej, zbliżając się do możliwości sieci czwartej generacji; dlatego jest czasami konwencjonalnie określany jako 3,75G.
- WiMAX. Początkowo WiMAX powstał w dwóch wersjach – „mobilnej” i „stałej”; zdecydowana większość nowoczesnych modemów komórkowych korzysta z drugiej opcji. Należy do standardów czwartej generacji – 4G (podczas gdy „mobilny” był konkurentem dla technologii 3G, choć czasem w celach marketingowych określany jest też mianem komunikacji czwartej generacji). Jakiś czas temu WiMAX był aktywnie promowany jako alternatywa dla przewodowego szerokopasmowego dostępu do Internetu (w szczególności jako najlepsza opcja dla sektora prywatnego, gdzie kabel jest trudno dostępny). Jednak obecnie ten standard stopniowo traci popularność – w szczególności ze względu na rozwój i promocję bardziej zaawansowanego LTE (które zresztą nie ma podziału na typy „mobilne” i „stacjonarne”).
- LTE (do 173 Mb/s). Standard komunikacji komórkowej czwartej generacji jest obecnie najpopularniejszą technologią 4G - w szczególności ze względu na to, że jest to dalszy rozwój W-CDMA/UMTS i może być wdrażany poprzez ulepszanie istniejących sieci (zarówno UMTS, jak i CDMA2000). Kolejnym powodem jego popularności jest ta sama wygoda zarówno dla sprzętu stacjonarnego, jak i mobilnego. Z drugiej strony przy wyborze modemu tego standardu należy mieć na uwadze, że w różnych krajach zasięgi i kanały LTE mogą się różnić, dlatego samo wsparcie tej technologii nie gwarantuje kompatybilności z konkretną siecią. Należy również pamiętać, że w niektórych krajach sieci LTE są dopiero na etapie wdrażania, a w niektórych zupełnie ich nie ma.
- EV-DO (Rev. A). EV-DO to technologia transmisji danych trzeciej generacji (3G) stosowana w sieciach komórkowych w standardzie CDMA (nie mylić z W-CDMA, zbudowanym na innym podstawowym standardzie - UMTS). Należy zauważyć, że w niektórych krajach ten typ sieci 3G rozpowszechnił się znacznie wcześniej niż W-CDMA i jego modyfikacje, a z wielu przyczyn technicznych jest używany głównie do transmisji danych - czyli do obsługi modemów 3G. Jeśli chodzi o Rev. A, jest to druga i najbardziej rozpowszechniona wersja standardu EV-DO.
- EV-DO (Rev.B). Trzecia wersja technologii EV-DO, rozwój i doskonalenie Rev.A; patrz wyżej, aby uzyskać szczegółowe informacje. W tym miejscu zauważamy, że ten standard jest również często używany jako połączenie 3G do transmisji danych; jego zasięg nie jest tak rozległy jak w poprzedniej wersji, ale nadal obejmuje większość dużych osad i ich otoczenia. Należy również pamiętać, że do korzystania ze wszystkich funkcji Rev.B wymagany jest modem z obsługą tej wersji, a nie wszystkie nowoczesne urządzenia EV-DO mogą się tym pochwalić.
Oceniając możliwości modemu należy mieć na uwadze, że podane dla każdej technologii wartości prędkości są maksymalne, co w praktyce jest osiągalne tylko w idealnych warunkach. Rzeczywiste wartości prędkości są z reguły niższe niż potencjalne; mogą zależeć zarówno od charakterystyki sieci, siły sygnału i innych kwestii technicznych, jak i od polityki operatora i warunków określonej taryfy.Podłączenie anteny MIMO
Możliwość podłączenia tzw. anteny MIMO (sama antena co do zasady należy dokupić osobno).
Technologia MIMO jest wykorzystywana w komunikacji Wi-Fi, a także w sieciach 4G LTE (począwszy od Cat.2). Jego ogólną zasadą jest podzielenie nadawanego sygnału na kilka anten nadawczych i odbiorczych; w tym przypadku każda z anten nadawczych rozsyła sygnał do wszystkich anten odbiorczych jednocześnie (lub przynajmniej do kilku z nich). Ten format pracy pozwala na efektywniejsze wykorzystanie zakresu częstotliwości, zwiększa rzeczywistą szybkość przesyłania danych, a także zwiększa odporność na zakłócenia. Ale anteny dla MIMO są dość nieporęczne, w przypadku modemów trudno je wbudować; a taka funkcjonalność jest wymagana nie tak często. Dlatego do pracy z tą technologią wykorzystywane są oddzielne anteny zewnętrzne.
Pamiętaj, że nawet w przenośnych hotspotach Wi-Fi (patrz „Rodzaj”) funkcja ta jest używana wyłącznie dla 4G / LTE; Połączenie Wi-Fi odbywa się dzięki wbudowanym antenom.
Moduł GPS
Obecność
modułu GPS w konstrukcji modemu. Funkcja ta umożliwia śledzenie aktualnych współrzędnych geograficznych urządzenia; lecz warianty pracy z danymi o współrzędnych mogą być inne. Najpopularniejszym sposobem wykorzystania takich modeli jest stosowanie ich jako zewnętrznego modułu GPS do laptopa lub innego urządzenia.
Pojemność baterii
Pojemność baterii zainstalowanej w modemie z odpowiednim rodzajem zasilania (patrz niżej).
Przy ceteris paribus, im wyższa pojemność, tym dłużej bateria może pracować bez doładowania. Należy jednak pamiętać, że sytuacja ceteris paribus praktycznie nie występuje we współczesnych modemach bezprzewodowych. Po pierwsze, różne technologie transmisji danych (patrz powyżej) charakteryzują się różnymi wskaźnikami zużycia energii; po drugie, nawet modele obsługujące te same standardy mogą różnić się pod względem zużyciem energii (i czasem pracy) ze względu na różnice konstrukcyjne. Dlatego w większości przypadków dany wskaźnik pełni rolę czysto informacyjną, a nawet bardzo podobne modele można za jego pomocą porównać tylko w przybliżeniu. Przy wyborze należy skupić się przede wszystkim na bezpośrednio deklarowanej specyfikacji dotyczącej żywotności (patrz niżej).
Czas pracy (surfowanie po internecie)
Maksymalny czas pracy modemu z zasilaniem bateryjnym (patrz „Zasilanie”) na jednym ładowaniu w trybie surfowania po Internecie. Taki zasilacz jest typowy dla routerów Wi-Fi, dlatego z reguły podczas surfowania po Internecie ma zapewniać dostęp do sieci WWW zewnętrznemu urządzeniu Wi-Fi.
Ta cecha jest głównym wskaźnikiem autonomii każdego modemu zasilanego bateryjnie. opisuje czas używania go do głównego celu bez ładowania. Jednocześnie należy pamiętać, że wskaźnik ten jest mierzony w pewnych „idealnych” warunkach; rzeczywisty czas działania zależy od wielu czynników, w tym intensywności surfowania, ilości przesyłanych danych, liczby podłączonych urządzeń i odległości do nich, siły sygnału sieci komórkowej itp. Dlatego w praktyce autonomia modemu może być nieco mniejsza. Niemniej jednak różne modele można łatwo porównać ze sobą pod względem czasu pracy zadeklarowanego w charakterystyce.
Czas pracy (czuwanie)
Maksymalny czas pracy modemu na zasilaniu bateryjnym (patrz "Zasilanie") w trybie czuwania na jednym ładowaniu akumulatora.
Ten tryb można określić jako tryb gotowości. Zakłada, że urządzenie jest włączone, jego obwody robocze pod napięciem i w każdej chwili gotowe do reakcji na przychodzący sygnał lub polecenie użytkownika, ale nie dochodzi do wymiany danych i nie działają żadne funkcje. Wskaźnik ten nie jest tak ważny jak czas działania w trybie surfowania po Internecie (patrz wyżej), ale ma też wartość praktyczną i pozwala ocenić autonomię urządzenia – wszak w przerwach między sesjami komunikacyjnymi modem jest w trybie czuwania.