Przepustowość
Przepustowość przełącznika to maksymalna ilość ruchu, jaką może obsłużyć. Wskazany w gigabitach na sekundę.
Parametr ten bezpośrednio zależy od liczby portów sieciowych w urządzeniu (z wyłączeniem Uplink). W rzeczywistości, nawet jeśli przepustowość nie jest wymieniona w charakterystyce, nadal można ją obliczyć za pomocą następującego wzoru: liczba portów pomnożona przez przepustowość pojedynczego portu i pomnożona przez dwa (ponieważ uwzględniany jest zarówno ruch przychodzący, jak i wychodzący ). Na przykład model z 8 gniazdami Gigabit Ethernet i 2 portami SFP będzie miał przepustowość (8 * 1 + 2 * 1) * 2 = 20 Gb/s.
Wybór tego wskaźnika jest dość oczywisty: należy oszacować szacunkowe wielkości ruchu w obsługiwanym segmencie sieci i upewnić się, że przepustowość przełącznika będzie się na niego nakładać z marginesem co najmniej 10-15% (da to dodatkową gwarancję w przypadku sytuacji awaryjnych). Jednocześnie, jeśli planujesz często pracować przy wysokich, zbliżonych do maksymalnych obciążeniach, nie zaszkodzi wyjaśnienie innej cechy, takiej jak wewnętrzna przepustowość przełącznika. Jest to zwykle podane w szczegółowym opisie technicznym, a jeśli ta wartość jest mniejsza niż całkowita przepustowość, mogą pojawić się poważne problemy podczas pracy przy znacznych obciążeniach.
Rozmiar tablicy adresów MAC
Maksymalna liczba adresów MAC, które mogą być jednocześnie przechowywane w pamięci przełącznika. Jest wskazany w tysiącach, na przykład 8K - 8 tys.
Przypomnijmy, że adres MAC jest unikalnym adresem każdego urządzenia sieciowego używanego w routingu fizycznym (w warstwie 2 modelu sieci OSI). Z takimi adresami współpracują wszystkie typy przełączników. A przełącznik warto dobierać według wielkości tabeli biorąc pod uwagę maksymalną liczbę urządzeń, które mają z nim współpracować (w tym licząc na możliwą rozbudowę sieci). Jeśli tabela nie wystarczy, przełącznik nadpisze nowe adresy na stare, co może znacznie spowolnić pracę.
Gigabit Ethernet
Liczba standardowych złączy RJ-45 formatu Gigabit Ethernet, przewidziana w konstrukcji urządzenia.
Jak sama nazwa wskazuje, złącza te zapewniają transfer danych z prędkością do 1 GB/s. Początkowo Gigabit Ethernet był uważany za standard profesjonalny, a nawet dziś realna potrzeba takich prędkości występuje głównie przy wykonywaniu zadań specjalnych. Niemniej jednak nawet stosunkowo niedrogie komputery są obecnie wyposażone w gigabitowe karty sieciowe, nie mówiąc już o bardziej zaawansowanym sprzęcie.
Jeśli chodzi o liczbę złączy, odpowiada ona liczbie urządzeń sieciowych, które można podłączyć bezpośrednio do „przełącznika”, bez użycia dodatkowego sprzętu. W przypadku Gigabit Ethernet liczba złączy do 10 włącznie jest uważana za stosunkowo niewielką, od 10 do 25 - średnią, a obecność ponad 25 portów tego typu jest typowa dla modeli poziomu profesjonalnego. Warto zaznaczyć, że w niektórych „przełącznikach” poszczególne złącza tego typu łączone są ze złączem optycznym SFP lub SFP+ (patrz poniżej). Złącza te są oznaczone jako „combo” i są uwzględniane zarówno przy podliczaniu RJ-45, jak i SFP/SFP+.
SFP (światłowód)
Liczba portów optycznych w standardzie SFP przewidziana w konstrukcji przełącznika.
Transmisja danych za pomocą kabla światłowodowego jest wygodna, ponieważ taki kabel nie jest podatny na zakłócenia elektromagnetyczne; a prędkość połączenia przez SFP może osiągnąć 2,7 Gb/s. Jednocześnie czyste włókno jest rzadko używane, więc nawet zaawansowane przełączniki zapewniają niewielką liczbę portów SFP - znacznie mniej niż Ethernet jednego lub drugiego typu (patrz wyżej). Tak więc najbardziej rozpowszechnione są rozwiązania na
2 złącza lub
4 złącza tego typu, chociaż jest ich więcej - 6, 8, a nawet
10 i więcej. Należy pamiętać, że przełączniki mogą używać tak zwanych złączy combo, które łączą SFP i Ethernet; obecność takich portów jest określona w uwagach, są one brane pod uwagę zarówno przy obliczaniu sieci LAN, jak i przy obliczaniu SFP. W każdym razie połączenie światłowodowe jest często używane jako łącze w górę (patrz poniżej).
Zauważ również, że w tym przypadku mówimy o oryginalnym standardzie SFP; dane dotyczące złączy w formacie SFP + są wskazane osobno (patrz poniżej).
Uplink
Liczba łączy nadrzędnych przewidzianych w konstrukcji przełącznika.
„Uplink” w tym przypadku nie jest typem, ale specjalizacją konektora: jest to nazwa interfejsu sieciowego, za pośrednictwem którego przełącznik (i podłączone do niego urządzenia sieciowe) komunikuje się z sieciami zewnętrznymi (w tym Internetem) lub siecią segmenty. Innymi słowy, jest to rodzaj „bramy”, przez którą przekazywany jest cały ruch z segmentu sieci obsługiwanego przez przełącznik. Uplink, w szczególności, może być używany do łączenia się z podobnym „przełącznikiem” (dla poziomej rozbudowy sieci) lub z urządzeniem wyższego poziomu (takim jak przełącznik główny).
W związku z tym liczba łączy w górę to maksymalna liczba połączeń zewnętrznych, które przełącznik może zapewnić bez użycia dodatkowego sprzętu. Konkretny typ takiego złącza może być inny, ale zwykle jest to jedna z odmian LAN lub SFP; zobacz „Typ łącza nadrzędnego”, aby uzyskać szczegółowe informacje.
Zarządzanie
Metody i protokoły zarządzania obsługiwane przez przełącznik.
-
SSH. Skrót od Secure Shell, tj. „Bezpieczna powłoka”. SSH zapewnia dość wysoki stopień bezpieczeństwa, ponieważ szyfruje wszystkie przesyłane dane, m.in. Hasła. Nadaje się do zarządzania prawie wszystkimi głównymi protokołami sieciowymi, ale do działania wymaga specjalnego narzędzia na komputerze sterującym.
-
Telnet. Protokół kontroli sieci, który można skonfigurować za pomocą tekstowego wiersza poleceń. Nie stosuje szyfrowania i nie chroni przesyłanych danych, a także pozbawiony jest interfejsu graficznego, dlatego w wielu obszarach jest wypierany przez opcje bezpieczniejsze (SSH) lub wygodne (webowe). Jednak nadal jest używany w nowoczesnym sprzęcie sieciowym.
-
Interfejs sieciowy. Funkcja ta umożliwia otwarcie interfejsu zarządzania przełącznikami w zwykłej przeglądarce internetowej. Główną wygodą interfejsu internetowego jest to, że nie wymaga dodatkowego oprogramowania - wystarczy przeglądarka (i jest dostępna w każdym "szanującym się" nowoczesnym systemie operacyjnym). Dzięki temu, znając adres urządzenia, login i hasło, można zarządzać ustawieniami z niemal każdego komputera w sieci (o ile oczywiście w parametrach dostępu nie określono inaczej).
-
SNMP. Skrót od Simple Network Management Protocol, tj. "Simple Network Management Protocol
...". Jest to standardowa część ogólnego protokołu TCP/IP, na której zbudowany jest zarówno Internet, jak i wiele sieci lokalnych. Wykorzystuje dwa rodzaje oprogramowania - "menedżerów" na komputerach sterujących i "agentów" na komputerach kontrolowanych (w tym przypadku na routerze). Bezpieczeństwo jest stosunkowo niskie, ale SNMP może być używane do prostych zadań zarządzania.
Pamiętaj, że ta lista nie jest wyczerpująca — nowoczesne przełączniki mogą zapewniać inne możliwości zarządzania, na przykład obsługę zastrzeżonych narzędzi i specjalnych technologii tego samego producenta.Podstawowe funkcje
-
Serwer DHCP. Funkcja ułatwiająca sterowanie adresami IP urządzeń podłączonych do przełącznika. Prawidłowa praca urządzenia sieciowego jest niemożliwa bez własnego adresu IP; a obsługa DHCP umożliwia przypisanie tych adresów ręcznie lub w pełni automatycznie. W takim przypadku administrator może ustawić dodatkowe parametry dla trybu automatycznego (zakres adresów, maksymalny czas użytkowania jednego adresu). I nawet w trybie całkowicie ręcznym praca z adresami odbywa się tylko za pomocą samego przełącznika (podczas gdy bez DHCP parametry te musiałyby być zapisane w ustawieniach każdego urządzenia w sieci).
-
Wsparcie sztaplowania. Możliwość obsługi urządzenia w trybie stosu. Stos składa się z kilku przełączników, postrzeganych przez sieć jako jeden „przełącznik”, z jednym adresem MAC, jednym adresem IP i całkowitą liczbą złączy równą całkowitej liczbie portów we wszystkich zaangażowanych urządzeniach. Funkcja ta jest przydatna, jeśli chcesz zbudować dużą sieć, w której brakuje możliwości jednego „przełącznika”, ale nie chcesz komplikować topologii.
-
Agregacja łączy. Przełącz obsługę technologii agregacji łączy. Technologia ta pozwala na połączenie kilku równoległych fizycznych kanałów komunikacyjnych w jeden logiczny, co zwiększa szybkość i niezawodność połączenia. Mówiąc najprościej, przełącznik z taką funkcją można podłączyć do innego urządzenia (na p
...rzykład routera) nie jednym kablem, ale dwoma lub nawet kilkoma kablami jednocześnie. W tym przypadku wzrost prędkości następuje z powodu sumowania przepustowości wszystkich kanałów fizycznych; jednak ogólna prędkość może być mniejsza niż suma prędkości - z drugiej strony łączenie kilku stosunkowo wolnych złączy jest często tańsze niż używanie sprzętu z bardziej zaawansowanym pojedynczym interfejsem. Wzrost niezawodności odbywa się, po pierwsze, poprzez rozłożenie całkowitego obciążenia na oddzielne kanały fizyczne, a po drugie, dzięki „gorącej” nadmiarowości: awaria jednego portu lub kabla może zmniejszyć prędkość, ale nie prowadzi do całkowitego przerwanie połączenia, ale po wznowieniu działania kanał jest automatycznie aktywowany.
Należy zauważyć, że zarówno standardowy protokół LACP, jak i niestandardowe, zastrzeżone technologie mogą być używane do agregacji łączy (ta ostatnia jest typowa na przykład dla przełączników Cisco). Ponadto istnieje wiele alternatywnych nazw dla tej technologii — trunking portów, łączenie łączy itp. czasami różnica tkwi tylko w nazwie, czasami pojawiają się niuanse techniczne. Wszystkie te szczegóły należy wyjaśnić osobno.
- VLAN. Przełącznik obsługuje funkcję VLAN - wirtualne sieci lokalne. W tym przypadku znaczeniem tej funkcji jest możliwość tworzenia oddzielnych logicznych (wirtualnych) sieci lokalnych w ramach fizycznego „obszaru lokalnego”. W ten sposób można np. podzielić działy w dużej organizacji, tworząc dla każdego z nich własną sieć lokalną. Organizacja VLAN może zmniejszyć obciążenie sprzętu sieciowego, a także zwiększyć stopień ochrony danych.
- Ochrona pętli. Zabezpieczenie pętli w przełączniku. Pętlę w tym przypadku można opisać jako sytuację, w której ten sam sygnał jest wyzwalany w sieci w nieskończonej pętli. Może to wynikać z niewłaściwego okablowania, użycia nadmiarowych łączy i innych przyczyn, ale w każdym przypadku takie zjawisko może „uśpić” sieć, co oznacza, że jest wysoce niepożądane. Ochrona pozwala uniknąć pętli — zwykle poprzez wyłączenie zapętlonych portów.
- Ograniczenie szybkości dostępu. Możliwość ograniczenia szybkości wymiany danych dla poszczególnych portów przełącznika. Dzięki temu możliwe jest zmniejszenie obciążenia sieci i zapobieganie „zatykaniu” kanału przez poszczególne terminale.
Pamiętaj, że ta lista nie ogranicza się do: nowoczesne przełączniki mogą mieć inne funkcje.Napięcie
Wielkość napięcia, niezbędna przełącznikowi do nieprzerwanej pracy. Napięcie zasilania urządzeń sieciowych może wahać się od 5 V do 230 V, co pozwala na zasilanie kompatybilnych urządzeń zarówno z niskonapięciowego gniazda USB w komputerze, jak i ze standardowego domowego gniazdka. Wartości "środkowe" zakładają, że przełącznik zasilany jest przez właściwy zasilacz.