Wykonywane pomiary
Parametry, które mogą być mierzone przez urządzenie.
-
Napięcie. Napięcie (różnica potencjałów między dwoma punktami w obwodzie), mierzone w woltach. Jeden z podstawowych parametrów elektrycznych, obsługiwany przez wszystkie typy przyrządów, z wyjątkiem oscyloskopów (patrz „Urządzenie”). Do pomiaru wykorzystywane jest połączenie równoległe. W urządzeniach analogowych (patrz „Rodzaj”) pomiar napięcia można przeprowadzić bez zasilania.
-
Aktualny. Siła prądu przepływającego przez określony odcinek obwodu; mierzone w amperach. Istnieją dwa sposoby pomiaru aktualnej siły: tradycyjny i bezkontaktowy. Pierwszy jest dostępny w prawie wszystkich urządzeniach z funkcją amperomierza, w tym celu konieczne jest otwarcie obwodu i szeregowe przekształcenie urządzenia w szczelinę (ponadto przy analogowej zasadzie działania amperomierz nie potrzebuje zasilania). Druga metoda stosowana jest w cęgach prądowych (patrz "Urządzenie").W większości przypadków modele są w stanie mierzyć
prąd stały i
przemienny.
-
Opór. Odporność określonego elementu na stały prąd elektryczny; mierzone w omach. Należy zauważyć, że w tym przypadku mówimy o tradycyjnych pomiarach, które nie wiążą się z ultrawysokimi rezystancjami charakterystycznymi dla izolacji (w izolacji parametr ten sp
...rawdzany jest odrębną metodą, więcej szczegółów poniżej). Pomiary rezystancji wykonuje się w następujący sposób: na sondy urządzenia przykładane jest określone napięcie (niskie, w granicach kilku woltów), po czym są one podawane na miejsce pomiaru - oraz rezystancja badanego odcinka obwodu lub inne obiekt jest obliczany na podstawie prądu płynącego przez utworzony obwód. Dlatego do pracy w trybie omomierza wymagane jest zasilanie - nawet dla instrumentu analogowego.
- Pojemność. Pojemność kondensatora mierzy się w faradach (częściej mikrofaradach i innych jednostkach pochodnych). Sam pomiar odbywa się poprzez doprowadzenie do kondensatora prądu przemiennego. Funkcja ta może być przydatna zarówno do wyjaśnienia pojemności kondensatorów bez oznaczenia (początkowo nieoznaczonych lub z wymazanymi napisami), jak i do sprawdzenia jakości podpisanych części. Na kondensatorach oprócz pojemności nominalnej można wskazać maksymalne odchylenie od nominalnej; jeśli wyniki pomiarów wykraczają poza dopuszczalne odchylenie, lepiej nie używać części. Jeśli odchylenie nie jest wskazane, można założyć, że nie powinno ono przekraczać 10% wartości nominalnej. Na przykład dla części 0,5 μF zakres dopuszczalnych pojemności wyniesie 0,45 - 0,55 μF.
- Temperatura. Pomiar temperatury - zwykle zewnętrznym czujnikiem zdalnym, najczęściej na bagnecie. W elektrotechnice funkcja ta służy do sterowania trybem pracy części wrażliwych na przegrzanie lub które muszą działać w określonym trybie temperaturowym.
- Częstotliwość. Możliwość pomiaru częstotliwości sygnału elektrycznego jest typowa przede wszystkim dla oscyloskopów i skopmetrów, ale można ją również spotkać w innych typach przyrządów - tych samych multimetrach (patrz "Urządzenie"). Z reguły oznacza to możliwość wyświetlania określonych liczb odpowiadających częstotliwości w hercach.
- Cła. Jedną z podstawowych cech jednorodnego sygnału impulsowego jest współczynnik wypełnienia, a mianowicie stosunek jego okresu powtarzania do czasu trwania pojedynczego impulsu. Na przykład, jeśli po każdym impulsie 2 ms następuje przerwa 6 ms, to okres powtarzania sygnału będzie wynosił T = 6 + 2 = 8 ms, a współczynnik wypełnienia wyniesie S = 8/2 = 4. Nie należy mylić cykl pracy z cyklem pracy: Chociaż te możliwości opisują jedną właściwość sygnału, robią to na różne sposoby. Współczynnik wypełnienia jest odwrotnością współczynnika wypełnienia, czyli stosunku długości impulsu do okresu powtarzania (w naszym przykładzie będzie to 2/8 = 25%). Termin ten występuje głównie w źródłach angielskich i tłumaczonych, natomiast w elektrotechnice domowej przyjmuje się termin „cykl pracy”.
- Indukcyjność. Indukcyjność jest głównym parametrem roboczym każdej cewki indukcyjnej. Możliwość zmierzenia tego parametru jest ważna w świetle faktu, że specjaliści i radioamatorzy często samodzielnie wykonują cewki, a określenie charakterystyki części bez specjalnego urządzenia jest niezwykle trudne, jeśli nie niemożliwe. Zasada pomiaru indukcyjności jest podobna do określania pojemności kondensatora (patrz wyżej) - przepuszczania prądu przemiennego przez cewkę i śledzenia jego „odpowiedzi”. Jednak funkcja ta jest znacznie mniej powszechna niż pomiar pojemności.
- Rezystancja izolacji. Rezystancja izolacji przewodów elektrycznych na prąd przemienny. Izolacja z definicji ma wyjątkowo dużą rezystancję, więc tradycyjna metoda pomiaru rezystancji (przy niskim napięciu roboczym, patrz wyżej) nie ma tu zastosowania – prądy byłyby zbyt słabe i niemożliwe byłoby ich dokładne zmierzenie. Dlatego do sprawdzania materiałów izolacyjnych i innych dielektryków nie stosuje się omomierzy, ale specjalnych urządzeń - megaomomierzy (lub multimetrów obsługujących ten tryb). Charakterystyczną cechą megaomomierza jest wysokie napięcie robocze - setki, a nawet tysiące woltów. Na przykład do badania izolacji napięciem roboczym 500 V wymagane jest to samo napięcie megaomomierza, dla materiału 3000 V - urządzenie 1000 V itp., bardziej szczegółowo wymagania dla różnych rodzajów izolacji opisano w źródła specjalne. Aby osiągnąć to napięcie, może być wymagany zewnętrzny moduł wysokonapięciowy, ale wiele multimetrów obsługujących ten rodzaj pomiaru jest w stanie samodzielnie generować krótkotrwałe impulsy wysokiego napięcia z niskonapięciowych źródeł zasilania, takich jak baterie AA lub Krona (patrz " Typ Akumulatora"). Należy pamiętać, że podczas pracy z megaomomierzem należy szczególnie uważnie przestrzegać zasad bezpieczeństwa - ze względu na wysokie napięcie robocze.
- Moc. Moc prądu elektrycznego określają dwa podstawowe parametry - siła prądu i napięcie; z grubsza mówiąc, wolty należy pomnożyć przez ampery, wynikiem będzie moc w watach. Tak więc teoretycznie parametr ten można wyjaśniać bez specjalnej funkcji pomiaru mocy - wystarczy wyjaśniać napięcie i prąd. Jednak niektóre przyrządy pomiarowe mają specjalny tryb, który pozwala natychmiast zmierzyć zarówno podstawowe parametry, jak i automatycznie na ich podstawie obliczyć moc - jest to wygodniejsze i szybsze niż wykonywanie obliczeń osobno. Wiele z tych urządzeń to cęgi (patrz „Urządzenie”) i pomiar prądu przy wyznaczaniu mocy odbywa się w sposób bezkontaktowy, a napięcie mierzone jest klasyczną metodą stykową. Istnieją inne opcje projektowe - na przykład adapter do gniazdka: urządzenie elektryczne jest podłączone do gniazdka przez taki adapter, a multimetr pobiera dane dotyczące prądu i napięcia z adaptera. Przypominamy również, że moc czynna (użyteczna) prądu przemiennego nie zawsze jest równa pełnej – przy obciążeniu pojemnościowym i/lub indukcyjnym część mocy (moc bierna) jest „zużywana” przez kondensatory/cewki. Możesz przeczytać więcej o tych parametrach w dedykowanych źródłach, ale tutaj zauważamy, że różne modele multimetrów mogą mieć różne możliwości pomiaru różnych rodzajów mocy; te punkty nie zaszkodzą wyjaśnić przed zakupem z góry.
- Kąt fazowy. Pomiar stopnia przesunięcia fazowego dwóch sygnałów elektrycznych (lub parametrów sygnału). Specyficzne rodzaje i możliwości takich pomiarów są różne, najbardziej popularne są dwie opcje. Pierwszym z nich jest pomiar różnicy między fazami zasilania trójfazowego, przede wszystkim w celu oceny jego ogólnej jakości. Drugi to oszacowanie przesunięcia fazowego między prądem a napięciem, które występuje, gdy obciążenie reaktywne (pojemnościowe lub indukcyjne) jest przyłożone do źródła prądu przemiennego; stosunek mocy czynnej do mocy pozornej (współczynnik mocy, „cos phi”) bezpośrednio zależy od tego przesunięcia.
- Częstotliwość rotacji. W tym przypadku najczęściej mówimy o możliwości pomiaru prędkości obrotowej silnika spalinowego. W związku z tym takie modele są zwykle określane jako specjalistyczne multimetry samochodowe. Przeznaczone są głównie do diagnostyki i testowania silników nie posiadających elektronicznych układów zapłonowych. Do pomiaru z reguły należy dopasować multimetr do liczby cylindrów silnika i podłączyć go do układu zapłonowego (konkretna metoda podłączenia musi być określona w dokumentacji samochodu).
Zauważ, że nie wszystkie są wymienione na tej liście, ale tylko najpopularniejsze pomiary znalezione we współczesnych multimetrach i innych urządzeniach o podobnym przeznaczeniu. Oprócz nich projekt może przewidywać bardziej specyficzne funkcje - więcej szczegółów w rozdziale „Inne pomiary”.Napięcie DC max.
Najwyższe napięcie DC (patrz Typ napięcia), które można skutecznie zmierzyć za pomocą tego urządzenia.
Zgodność z tym parametrem jest ważna nie tylko dla prawidłowych pomiarów, ale także z punktu widzenia bezpieczeństwa. Pomiar zbyt wysokiego napięcia może prowadzić do wadliwego działania urządzenia, począwszy od działania zabezpieczenia awaryjnego (może to być bezpiecznik jednorazowy, który po pracy należy wymienić) a skończywszy na całkowitej awarii i nawet ogień. Dlatego w żadnym wypadku nie należy przekraczać tego wskaźnika. I warto wybrać urządzenie na maksymalne napięcie z pewnym marginesem - co najmniej 10 - 15%: da to dodatkową gwarancję w sytuacjach awaryjnych. Z drugiej strony margines nie powinien być zbyt duży: wysoki stały próg napięcia może pogorszyć dokładność pomiarów przy niskim napięciu, a także wpłynąć na cenę, wymiary i wagę urządzenia.
Zauważ, że większość multimetrów i innych podobnych urządzeń ma kilka zakresów pomiarowych, z różnymi maksymalnymi progami. Oznacza to, że dla bezpiecznego pomiaru napięcia bliskiego maksimum należy w ustawieniach ustawić odpowiedni tryb.
Dokładność pomiaru (V⁻)
Dokładność pomiaru zapewniana przez przyrząd.
Zwyczajowo dokładność pomiaru multimetrów wskazuje się najmniejszym błędem (w procentach), jaki urządzenie jest w stanie zapewnić podczas pomiaru prądu stałego. Im mniejsza liczba w tym punkcie, tym odpowiednio wyższa dokładność. Jednocześnie podkreślamy, że jest to najmniejszy błąd (najwyższa dokładność), który zazwyczaj osiągany jest tylko w pewnym zakresie pomiarowym; w innych zakresach dokładność może być niższa. Np. jeżeli w zakresie „1 – 10 V” urządzenie podaje maksymalne odchylenie 0,5%, a w zakresie „10 – 50 V” – 1%, to w charakterystyce będzie wskazane 0,5%. Niemniej jednak, zgodnie z tym wskaźnikiem, całkiem możliwe jest ocenianie i porównywanie nowoczesnych multimetrów. Czyli urządzenie z mniejszym deklarowanym błędem z reguły i generalnie będzie dokładniejsze niż model o podobnych osiągach z większym błędem.
Dane dotyczące dokładności pomiarów w innych zakresach i trybach można podać w szczegółowej charakterystyce urządzenia. Jednak w praktyce ta informacja nie jest wymagana tak często - tylko w przypadku niektórych konkretnych zadań, w których zasadniczo konieczne jest poznanie możliwego błędu.
Napięcie AC max.
Najwyższe napięcie AC (patrz Typ napięcia), które można skutecznie zmierzyć za pomocą tego modelu. Parametr ten jest ważny nie tylko dla samych pomiarów, ale także dla bezpiecznej obsługi urządzenia: zmierzenie zbyt wysokiego napięcia w najlepszym wypadku uruchomi zabezpieczenie awaryjne (a możliwe, że po tym będzie trzeba poszukać nowego bezpiecznik do wymiany spalonego), w najgorszym przypadku - na awarię sprzętu, a nawet pożar. Ponadto dla bezpiecznych pomiarów niezwykle pożądany jest margines napięciowy – wynika to zarówno z charakterystyki prądu przemiennego, jak i z możliwości różnych nienormalnych sytuacji w sieci, przede wszystkim przepięć. Na przykład w przypadku sieci 230 V pożądane jest posiadanie urządzenia na co najmniej 250 V, a lepiej - na 300 - 310 V; szczegółowe zalecenia dotyczące innych przypadków można znaleźć w dedykowanych źródłach.
Zauważ, że większość multimetrów i innych podobnych urządzeń ma kilka zakresów pomiarowych, z różnymi maksymalnymi progami. Oznacza to, że dla bezpiecznego pomiaru napięcia bliskiego maksimum należy w ustawieniach ustawić odpowiedni tryb.
Rezystancja max.
Największy opór, jaki urządzenie może skutecznie zmierzyć.
Wybierając według tego wskaźnika należy przede wszystkim wziąć pod uwagę największe opory, które mają być mierzone. A jeśli mówimy o urządzeniu analogowym (patrz „Rodzaj”), musisz również pamiętać, że gdy zbliżasz się do maksymalnego oporu, dokładność pomiaru gwałtownie spada. Wynika to ze specyfiki pomiaru i kalibracji skali w takich urządzeniach: na przykład przy maksymalnej rezystancji 1 MΩ dokładność pomiaru w zakresie 0 - 2 kΩ może wynosić 0,2 kΩ, w zakresie 2 - 6 kΩ - 0,5 kΩ, w zakresie 6 - 10 kOm - już 1 kOm, a bliżej maksimum, wskaźnik ten może osiągnąć dziesiątki, a nawet setki kiloomów. Dlatego warto wybrać urządzenie analogowe tak, aby jego maksymalna rezystancja była co najmniej 10 razy wyższa od maksymalnych rezystancji, które planuje się zmierzyć - tylko pod tym warunkiem zapewniona jest mniej lub bardziej akceptowalna dokładność pomiaru.
Funkcje
-
Sprawdzenie tranzystora. Możliwość wykorzystania urządzenia do testowania tranzystorów, a raczej obecność odpowiedniego trybu w konstrukcji urządzenia Technicznie wydajność tranzystora można w pewnym stopniu kontrolować za pomocą zwykłego omomierza, do tego istnieje odpowiednia technika. Niemniej jednak znacznie łatwiej jest korzystać z trybu specjalnego - wystarczy odpowiednio podłączyć tranzystor do multimetru, a urządzenie automatycznie poda dane dotyczące stanu lub awarii części (a czasem dodatkowe jej cechy). Najczęściej do takich pomiarów na obudowie znajduje się specjalny blok z kompletem gniazd dla wyjść tranzystorowych (z osobnymi kompletami gniazd dla typów pnp i npn).
-
Test diody. Obecność specjalnego trybu sprawdzania diod w konstrukcji multimetru. Zasada działania diody polega na przepuszczaniu prądu elektrycznego tylko w jednym kierunku; dlatego przydatność samej takiej części można określić bez specjalnego trybu, na przykład w trybie konwencjonalnego omomierza, „ciągłości” obwodu (patrz poniżej) lub w inny sposób. Tryb specjalny jest jednak często wygodniejszy - zarówno ze względu na prostotę samej procedury, jak i ze względu na fakt, że wiele urządzeń w tym trybie jest w stanie zmierzyć również spadek napięcia przewodzenia na diodzie (najniższe napięcie wymagane do przejścia prąd w kierunku do przodu).
- "Dzwoniący" łańcuch. Możliwość pracy urządzenia w trybie
„ciągłości” obwodu – sprawdzanie obecności kontaktu pomiędzy dwoma wybranymi punktami. Ten tryb różni się od zwykłego sprawdzania omomierzem tym, że obecności styku towarzyszy sygnał dźwiękowy (stąd nazwa). Taki sygnał zwalnia użytkownika z konieczności każdorazowego patrzenia na skalę urządzenia w celu wyjaśnienia obecności lub braku kontaktu, a to znacznie przyspiesza pracę i może być bardzo przydatne, jeśli trzeba „dzwonić” wielu sekcje na raz.
-
Generator meandra. Urządzenie może pracować w trybie generowania meandrów – sygnał o prostokątnym kształcie impulsu i współczynniku wypełnienia (patrz wyżej) na poziomie 2. Wykres takiego sygnału wygląda jak zbiór prostokątnych pików i upadów o tej samej długości. Meander to standardowy format sygnału dla nowoczesnej technologii cyfrowej; sygnał tego typu generowany przez multimetr służy do sprawdzania mikroukładów, elementów logicznych, wzmacniaczy i innych podobnych elementów i obwodów (pod kątem działania, transmisji sygnału itp.).
-
Prawdziwa wartość skuteczna. Możliwość pomiaru za pomocą urządzenia True RMS - rzeczywista średnia kwadratowa wartości prądu AC (patrz "Rodzaj prądu"). Siła prądu przemiennego nie jest określona przez rzeczywistą wartość (w każdym momencie będzie inna), a nie przez maksymalną amplitudę (w końcu maksymalne wartości występują również tylko w określonych momentach czasu), ale przez pierwiastek średniokwadratowy. W takim przypadku w urządzeniach, które nie obsługują True RMS, wartość ta jest wyświetlana w następujący sposób: prąd przemienny jest prostowany, jego wartość jest wyznaczana i mnożona przez współczynnik 1,1 (jest to spowodowane matematycznymi cechami pomiarów). Jednak ta metoda jest odpowiednia tylko dla idealnej sinusoidy; przy zniekształconym sygnale daje zauważalny, a często nawet niedopuszczalnie wysoki błąd. Zniekształcenia występują prawie we wszystkich sieciach prądu przemiennego, co może prowadzić do poważnych błędów pomiarowych i późniejszych problemów (np. dobór zbyt „słabego” bezpiecznika automatycznego). Technologia True RMS uwzględnia wszystkie te cechy: przyrządy oznaczone takim oznaczeniem są w stanie dokładnie zmierzyć moc prądu przemiennego niezależnie od tego, jak bardzo jego kształt odpowiada idealnej fali sinusoidalnej.
-
Autowybór zakresu pomiarowego. Funkcja pozwalająca urządzeniu na automatyczne dobranie optymalnego zakresu pomiarowego tak, aby wynik był jak najdokładniej wyświetlany na ekranie. Funkcja ta występuje tylko w urządzeniach cyfrowych (patrz „Typ”). Należy pamiętać, że podczas korzystania z niego użytkownik nadal będzie musiał ustawić pewne podstawowe ustawienia - na przykład „prąd stały, natężenie, miliampery” lub „prąd przemienny, napięcie, wolty”. Jednak urządzenie samo wykona dokładniejsze ustawienie: np. do pomiaru napięcia w setkach woltów można użyć zakresu 0 - 1000 V z dokładnością do 5 V, a przy podłączeniu baterii 1,5 V, urządzenie automatycznie przełączy się na zakres 0 - 12 V i wyświetli wynik z dokładnością do dziesiątych części wolta. Jednocześnie w konstrukcji można przewidzieć całkowicie ręczny tryb pomiaru, z wyborem zakresu na życzenie użytkownika, jednak obecność takiego trybu nie zaszkodzi wyjaśnić osobno.