Polska
Katalog   /   Klimatyzacja, ogrzewanie i zaopatrzenie w wodę   /   Zaopatrzenie w wodę i pompy   /   Pompy powierzchniowe

Porównanie Pedrollo JSWm 2C vs Pedrollo JCRm1A-N

Dodaj do porównania
Pedrollo JSWm 2C
Pedrollo JCRm1A-N
Pedrollo JSWm 2CPedrollo JCRm1A-N
od 586 zł
Produkt jest niedostępny
od 616 zł
Produkt jest niedostępny
TOP sprzedawcy
Przeznaczeniewoda czystawoda czysta
Dane techniczne
Maks. wydajność
4200 l/h /maks./
3300 l/h /maks./
Wysokość podnoszenia
50 m /maks./
48 m /maks./
Maksymalne ciśnienie robocze6.5 bar6 bar
Zasada działaniaodśrodkowa
Rodzajsamozasysającasamozasysająca
Wysokość ssania9 m9 m
Maks. temperatura płynu40 °C40 °C
Budowajednostopniowajednostopniowa
Przyłącze wylotowe / króciec1"1"
Przyłącze wlotowe / króciec1"1"
Silnik
Moc750 W600 W
Zasilanieelektryczneelektryczne
Napięcie230 V230 V
Rodzaj silnikaasynchroniczny
Dane ogólne
Klasa zabezpieczenia (IP)X444
Kraj pochodzenia markiWłochyWłochy
Materiał korpusużeliwostal nierdzewna
Materiał wirnika / rotoramosiądzstal nierdzewna
Wymiary388x201x180 mm357x182x182 mm
Waga13 kg
Data dodania do E-Katalogczerwiec 2015listopad 2014

Maks. wydajność

Maksymalna objętość wody, jaką urządzenie jest w stanie przepompować w określonym czasie; również parametr ten jest czasami nazywany przepustowością. Jest to jedna z kluczowych cech każdej pompy, ponieważ. charakteryzuje objętość wody, z jaką może pracować urządzenie. Jednocześnie nie zawsze ma sens dążenie do maksymalnej wydajności – w końcu wpływa to znacząco na gabaryty, wagę i „żarłoczność” urządzenia.

Istnieją formuły, które pozwalają uzyskać optymalne wartości wydajności dla różnych sytuacji. Tak więc, jeśli pompa jest przeznaczona do dostarczania wody do punktów poboru wody, jej minimalna wymagana wydajność nie powinna być niższa niż najwyższy całkowity przepływ; w razie potrzeby do tej wartości można dodać margines 20 - 30%. A w przypadku modeli kanalizacji (patrz „Miejsce docelowe”) wszystko będzie zależeć od objętości ścieków. Bardziej szczegółowe zalecenia dotyczące wyboru pompy w zależności od wydajności można znaleźć w specjalnych źródłach.

Wysokość podnoszenia

Maksymalna wysokość podnoszenia generowana przez pompę. Parametr ten jest najczęściej wskazywany w metrach, przez wysokość słupa wody, jaką urządzenie może wytworzyć - innymi słowy, przez wysokość, na którą jest w stanie dostarczyć wodę. Możesz oszacować ciśnienie wytwarzane przez pompę za pomocą prostego wzoru: każde 10 m słupa odpowiada ciśnieniu 1 bara.

Warto wybrać pompę według tego parametru, biorąc pod uwagę wysokość na jaką powinna dostarczać wodę, a także uwzględniając straty i zapotrzebowanie na ciśnienie w doprowadzeniu wody. Aby to zrobić, konieczne jest określenie różnicy wysokości między poziomem wody a najwyższym punktem poboru wody, dodaj do tej liczby kolejne 10 do 30 m (w zależności od ciśnienia, które należy uzyskać w systemie wodociągowym) i pomnóż wynik przez 1,1 - będzie to wymagane minimalne ciśnienie.

Maksymalne ciśnienie robocze

Najwyższe ciśnienie, jakie pompa jest w stanie wytworzyć podczas pracy. Parametr ten jest bezpośrednio związany z ciśnieniem (patrz wyżej), jednak jest mniej oczywisty, dlatego rzadko jest wskazywany.

Zasada działania

Podstawowa zasada lub zasady, według których odbywa się ssanie pompy.

- odśrodkowy. Jak sama nazwa wskazuje, ten typ pompy wykorzystuje siłę odśrodkową. Ich głównym elementem jest wirnik zamontowany w okrągłej obudowie; wlot znajduje się na osi obrotu tego koła. Podczas pracy, dzięki sile odśrodkowej, jaka występuje podczas obrotu koła, ciecz jest wyrzucana od środka do jej krawędzi, a następnie wchodzi do rury wylotowej skierowanej stycznie do okręgu obrotu koła. Pompy odśrodkowe są dość proste w konstrukcji i niedrogie, a jednocześnie niezawodne i ekonomiczne (ze względu na wysoką wydajność), mają dużą wysokość ssania (patrz poniżej), a przepływ płynu jest ciągły. Jednocześnie wydajność takich jednostek może drastycznie spaść przy wysokiej odporności w systemie zaopatrzenia w wodę. Ponadto, jeśli poziom cieczy jest poniżej wlotu, pompę trzeba będzie uzupełniać wodą przed każdym uruchomieniem.

- Wir. Pompy peryferyjne są nieco podobne do pomp odśrodkowych: mają również okrągłą obudowę i wirnik z łopatkami. Jednak w takich zespołach zarówno rura wlotowa, jak i wylotowa są skierowane stycznie do wirnika, a łopatki różnią się konstrukcją. Zasadniczo odmienny jest też sposób działania – zgodnie z nazwą wykorzystuje wiry powstałe na łopatkach kół. Jednostki Vortex są znacznie lepsze od odśrodkowych pod względem ciśnienia; ponadto są one zwykle samozasysające (patrz „Urządzenia”), a konstrukcja w większości przypadków jest taka, że pompę należy napełnić wodą do...piero po pierwszym włączeniu po instalacji. Z drugiej strony takie modele są wrażliwe na zanieczyszczenia – nawet drobne cząstki dostające się do wirnika mogą spowodować uszkodzenie, znacznie obniżając wydajność. Tak, a wydajność pomp wirowych jest niska - 2 - 3 razy niższa niż pomp odśrodkowych; mają również gorszą wysokość ssania (patrz poniżej).

- Wir odśrodkowy. Pompy, które łączą w działaniu dwie zasady opisane powyżej. W rzeczywistości każda taka urządzenie jest parą pomp odśrodkowych i wirowych zamontowanych na wspólnym wale i połączonych szeregowo. Podczas pracy woda najpierw dostaje się do koła odśrodkowego, które odpowiada za ssanie, a następnie do koła wirowego, które zapewnia ciśnienie. Dzięki temu udało się połączyć zalety obu typów w jednym urządzeniu – dużą wysokość ssania, wysokie ciśnienie i urządzenie samozasysające. Jednak te jednostki kosztują odpowiednio.

- Wibruje. Używany jest również termin „membrana”. Działanie pomp wibracyjnych opiera się na zastosowaniu elastycznej membrany, wyposażonej w urządzenie wprawiające ją w drgania. Ta membrana jest jedną ze ścian komory roboczej, a sama komora posiada zawory wlotowe i wylotowe. Kiedy membrana przesuwa się „na zewnątrz” i zwiększa się objętość komory roboczej, zawór wlotowy otwiera się (wylot jest zamknięty), umożliwiając wejście płynu; a kiedy membrana porusza się „do wewnątrz” i wypycha ciecz, przeciwnie, otwiera się wylot. Główne zalety tego urządzenia to prostota, kompaktowość, uniwersalność, niski koszt, łatwość regulacji i prawie całkowita niewrażliwość na pracę na sucho. Jednocześnie żywotność takich jednostek jest stosunkowo krótka ze względu na silne zużycie membrany.

- Śruba. Inną nazwą tej zasady jest „świder”, ponieważ główną częścią takich pomp jest właśnie śruba - wirnik (lub kilka wirników) w postaci śruby. Taka konstrukcja sprawia, że pompa jest bardzo niezawodna, pozwala osiągnąć wysokie ciśnienie wylotowe i równomierne dostarczanie cieczy, zapewnia samozasysanie (patrz "Urządzenie"), a także ma niski poziom hałasu. Jednocześnie jednostki śrubowe są trudne do wyprodukowania i odpowiednio drogie.

Moc

Moc znamionowa silnika pompy. Im mocniejszy silnik, tym wyższa wydajność urządzenia, z reguły większe ciśnienie, wysokość ssania itp. Oczywiście parametry te w dużej mierze zależą od innych cech (przede wszystkim zasady działania, patrz wyżej); ale modele podobne w konstrukcji można porównywać w kategoriach ogólnych pod względem mocy.

Należy pamiętać, że duża moc z reguły zwiększa rozmiar, wagę i koszt pompy, a także wiąże się z wysokimi kosztami energii elektrycznej lub paliwa (patrz „Moc”). Dlatego warto wybrać pompę według tego wskaźnika, biorąc pod uwagę konkretną sytuację; bardziej szczegółowe zalecenia można znaleźć w specjalnych źródłach.

Rodzaj silnika

Typ silnika zainstalowanego w pompie elektrycznej (patrz „Moc”).

- Asynchroniczny. Najpopularniejszy obecnie typ silników elektrycznych, w tym. oraz w pompach. Silniki asynchroniczne są proste w konstrukcji i niedrogie, a jednocześnie bardzo niezawodne. Ich główną wadą jest trudność w regulacji prędkości obrotowej i zależność tej częstotliwości od obciążenia wirnika; z drugiej strony w większości przypadków te niedociągnięcia nie są krytyczne.

- Synchroniczny. Bez wchodzenia w szczegóły techniczne można powiedzieć, że ten typ silnika elektrycznego jest uważany za bardziej zaawansowany niż asynchroniczny – w szczególności ze względu na możliwość łatwej regulacji prędkości. Jednocześnie takie jednostki są trudne w produkcji i drogie, dlatego są niezwykle rzadkie - głównie w technologii high-end, gdzie dokładność regulacji jest kluczowym parametrem.

Klasa zabezpieczenia (IP)

Wskaźnik określający stopień ochrony niebezpiecznych (ruchomych i przewodzących prąd) części „farszu” pompy przed niekorzystnymi skutkami, a mianowicie ciałami stałymi i wodą. Ponieważ pompy z definicji służą do pompowania cieczy, a wiele z nich może normalnie przepuszczać dość duże cząstki, w tym przypadku mówimy o ochronie przed wilgocią i ciałami obcymi z zewnątrz.

Poziom ochrony jest zwykle wskazywany przez oznaczenie liter IP („ochrona przed wnikaniem” - „ochrona przed wnikaniem”) i dwie liczby, z których pierwsza oznacza ochronę przed działaniem ciał stałych, a druga - przed wnikaniem Z wody.

Dla pierwszej cyfry każda wartość odpowiada następującym wartościom ochrony: 1 - ochrona przed przedmiotami o średnicy większej niż 50 mm (duże powierzchnie ciała) 2 - przed przedmiotami o średnicy większej niż 12,5 mm (palce itp.) 3 - przed przedmiotami większymi niż 2,5 mm (większość narzędzi) 4 - przed przedmiotami większymi niż 1 mm (praktycznie wszystkie narzędzia, większość przewodów) 5 - pyłoszczelny (całkowita ochrona przed kontaktem; kurz może dostać się, ale nie wpływa na działanie urządzenia) 6 - pyłoszczelna (obudowa z pełną ochroną przeciwpyłową i kontaktową).

Dla drugiej cyfry: 1 - ochrona przed kroplami wody spadającymi pionowo 2 - przed kroplami wody z odchyleniem do 15 ° od osi pionowej urządzenia 3 - przed kroplami wody z odchyleniem do 60 ° od pionowa oś urządzenia (deszcz) 4 - przed rozbryzgami z dowolnego kierunku 5 - od strumieni...z dowolnego kierunku 6 - od fal morskich lub silnych strumieni wody 7 - krótkotrwałe zanurzenie na głębokość do 1 m (bez możliwości pracy ciągłej w zanurzeniu) 8 - długotrwałe zanurzenie na głębokość powyżej 1 m (z możliwością pracy ciągłej) w zanurzeniu).

Należy pamiętać, że w niektórych przypadkach jedną z cyfr można zastąpić literą X - oznacza to, że nie przeprowadzono oficjalnej certyfikacji odpowiedniego parametru. W pompach X jest zwykle umieszczany w miejscu pierwszej cyfry, ponieważ. wysoki stopień odporności na wilgoć (a na przykład w przypadku modeli podwodnych musi z definicji odpowiadać 8) sam w sobie oznacza wysoki stopień ochrony przed zanieczyszczeniami stałymi.

Materiał korpusu

Materiał, z którego wykonany jest korpus pompy jest elementem konstrukcyjnym, w którym montowany jest mechanizm roboczy (wirnik lub śruba). Zwróć uwagę, że obudowa silnika może być wykonana z innego materiału - w tym przypadku nie ma to znaczenia; aw pompach silnikowych (patrz „Moc”) mówimy o obudowie samej pompy, a nie o ramie nośnej, w której jest zamocowana.

W naszych czasach najbardziej popularne są następujące opcje:

- Plastikowy. Niedrogi materiał, który doskonale jest odporny na wilgoć i nie podlega korozji. Jednak niezawodność plastiku jako całości nie jest bardzo wysoka; wyjątkiem są specjalne gatunki o wysokiej wytrzymałości, ale są one niezwykle rzadkie w pompach (gdy potrzebna jest wytrzymałość, zwykle stosuje się metale). Tak więc plastikowe walizki są wyposażone głównie w stosunkowo proste i niedrogie modele, które nie są przeznaczone do poważnych obciążeń.

- Żeliwo. Niezwykle popularny w naszych czasach materiał: żeliwo jest mocne, niezawodne, trwałe, a przy tym ma stosunkowo niski koszt. To prawda, że pod względem odporności na korozję materiał ten jest gorszy od stali nierdzewnej (patrz poniżej); jednak z zastrzeżeniem zasad eksploatacji pompy, żywotność żeliwnej obudowy nie jest gorsza niż żywotność większości głównych elementów urządzenia. Zauważamy również, że takie przypadki są dość masywne, co utrudnia transport; jednak w niektórych przypadkach duży ciężar jest zaletą: pomaga tłumić wibracje.

- Stal nierdzewna. Zgo...dnie z nazwą, jedną z kluczowych zalet „stali nierdzewnej” jest wysoka odporność na korozję – a co za tym idzie niezawodność i trwałość. Z drugiej strony ten materiał również kosztuje nieco więcej niż to samo żeliwo. Waga takich przypadków jest nieco mniejsza - to znowu może być zarówno zaletą, jak i wadą, w zależności od sytuacji.

— Aluminium. Najwyższej jakości materiał. Stopy aluminium stosowane w dzisiejszych pompach są lekkie, mocne, trwałe, praktycznie odporne na wilgoć, ale odpowiednio kosztują.

- Mosiądz. Dość rzadka opcja spotykana w poszczególnych modelach pomp powierzchniowych. Mosiądz jest wystarczająco mocny, niezawodny i odporny na wilgoć, ale w większości przypadków nie ma kluczowej przewagi nad tą samą „stalą nierdzewną” lub aluminium, ale kosztuje nieco więcej.

— Brąz. Inny materiał podobny do opisanego wyżej mosiądzu jest trwały i praktyczny, ale rzadko używany.

— Ceramika. Materiał występujący wyłącznie w pompach ściekowych w postaci muszli klozetowych (patrz "Opcja"). Najczęściej ceramika to sanitariaty lub droższe i trwalsze sanitariaty – czyli te same materiały, co w zwykłych toaletach bez wbudowanych pomp.

Materiał wirnika / rotora

Materiał, z którego wykonany jest główny element roboczy pompy to koło (wirnik), ślimak lub membrana. Ta część ma bezpośredni kontakt z pompowaną cieczą, dlatego jej właściwości są kluczowe dla ogólnej wydajności i możliwości pompy.

- Plastikowy. Plastik jest tani, poza tym nie podlega korozji. Uważa się, że wytrzymałość mechaniczna tego materiału jest na ogół niska i nie toleruje on kontaktu z zanieczyszczeniami stałymi. Jednak dzisiaj istnieje wiele odmian tworzyw sztucznych - w tym specjalne odmiany o wysokiej wytrzymałości, które nadają się nawet do pracy z silnie zanieczyszczoną wodą lub ściekami. Tak więc plastikowe wirniki / śruby można znaleźć w różnych typach pomp; ogólna jakość i niezawodność takich części z reguły zależy od kategorii cenowej urządzenia.

- Żeliwo. Solidny, trwały, niezawodny a przy tym stosunkowo niedrogi materiał. Pod względem odporności na korozję żeliwo jest teoretycznie gorsze od bardziej zaawansowanych stopów, takich jak stal nierdzewna lub aluminium; jednak, z zastrzeżeniem zasad eksploatacji, punkt ten nie jest krytyczny, a żywotność części żeliwnych jest nie mniejsza niż całkowity okres użytkowania pompy. Do jednoznacznych wad tej opcji należy zaliczyć dużą masę, która nieznacznie zwiększa zużycie energii/paliwa podczas pracy.

- Stal nierdzewna. Zgodnie z nazwą, jedną z kluczowych zalet „stali nierdzewnej” jest wysoka odporność na korozję – a co za tym idzie niezawodność i trwałość. Taki stop jest nieco droższy...niż żeliwo, ale też mniej waży.

— Aluminium. Stopy aluminium łączą w sobie wytrzymałość, niezawodność, odporność na korozję i niską wagę. Jednak takie materiały są dość drogie - droższe niż ta sama „stal nierdzewna”, nie wspominając o żeliwie.

- Mosiądz. Odmiany mosiądzu stosowane w pompach wyróżniają się dużą wytrzymałością i twardością oraz niewrażliwością na wilgoć. Takie materiały są dość drogie, ale ta cena jest w pełni uzasadniona wspomnianymi zaletami. Dlatego w niektórych typach pomp - w szczególności modelach powierzchniowych i przepompowniach - bardzo popularne są wirniki mosiężne.

— Brąz. Materiał podobny pod wieloma właściwościami do mosiądzu opisanego powyżej. Jednak brąz jest używany znacznie rzadziej – w szczególności ze względu na nieco wyższy koszt.

— Stal. Odmiany stali, które nie są związane ze stalą nierdzewną, są stosowane niezwykle rzadko - w niektórych modelach pomp do cieczy chemicznych. Jednocześnie jako podstawę takich części zwykle stosuje się stal, a w celu ochrony przed korozją nakłada się na nią powłokę z fluoroplastu lub innego podobnego materiału.

— silumin. Silumin to stopy aluminium z dodatkiem krzemu. Z wielu powodów takie materiały są rzadkością w pompach, a głównie wśród stosunkowo niedrogich modeli.

- Guma. Materiał tradycyjnie stosowany na membrany w pompach wibracyjnych (patrz „Zasada działania”).
Dynamika cen
Pedrollo JSWm 2C często porównują
Pedrollo JCRm1A-N często porównują