Maks. wydajność
Maksymalna ilość wody, jaką pompa może dostarczyć ze studni w jednostce czasu. Wybór według tego parametru zależy od dwóch głównych punktów: maksymalnego całkowitego zużycia i wydajności (natężenia przepływu) odwiertu.
Maksymalne całkowite zużycie to ilość wody niezbędna do jednoczesnej normalnej pracy wszystkich punktów poboru wody w systemie. Różne typy konsumentów (umywalka, prysznic, pralka itp.) wymagają różnych ilości wody; dokładne wartości można znaleźć w specjalnych tabelach lub instrukcjach do konkretnych modeli sprzętu AGD. Całkowite zużycie można obliczyć, sumując wskaźniki wszystkich punktów poboru. Jeśli chodzi o natężenie przepływu studni, to jest to maksymalna ilość wody, jaką studnia jest w stanie wyprodukować w określonym czasie bez jej spuszczania. Wskaźnik ten jest zwykle wskazany w dokumentach studni; jeśli nie jest to znane, przed zakupem pompy stałej konieczne jest określenie natężenia przepływu - na przykład poprzez próbne pompowanie niedrogim urządzeniem.
W związku z tym wydajność pompy nie powinna przekraczać natężenia przepływu studni i pożądane jest, aby stanowiło co najmniej 50% maksymalnego całkowitego zużycia podłączonego systemu zaopatrzenia w wodę. Pierwsza zasada pozwala uniknąć opróżniania pompy i związanych z tym problemów, a przestrzeganie drugiej gwarantuje normalną ilość wody nawet przy dość intensywnym poborze wody. I oczywiście nie zapominaj, że
wysoka wydajność wymaga dużej mocy i
...wpływa na koszt urządzenia.Maks. podnoszenie
Sama głowica to maksymalna wysokość, na jaką pompa może podnieść wodę podczas pracy (najwyższa wysokość słupa wody, jaką może utrzymać). Parametr ten opisuje ciśnienie wytwarzane podczas pracy, ale ponieważ praca pomp wiertniczych jest bezpośrednio związana głównie z podnoszeniem się płynu na dużą wysokość, użycie danych głowicy w metrach jest łatwiejsze niż użycie danych dotyczących ciśnienia. Jednak w razie potrzeby można je łatwo przełożyć na drugie - 10 m wysokości odpowiada ciśnieniu 1 bara.
Przy doborze pompy do tego parametru nie
trzeba dążyć do wysokiego ciśnienia, ale należy wziąć pod uwagę szereg czynników.
Pierwsza z nich to rzeczywista wysokość, na którą trzeba podnieść wodę; można to określić, dodając głębokość zanurzenia pompy i wysokość najwyższego punktu poboru nad ziemią. Wyświetlana jest głębokość zanurzenia z uwzględnieniem tzw. dynamiczny poziom wody w studni – tj. odległość od powierzchni ziemi do powierzchni wody podczas ciągłej pracy pompy (wskaźnik ten jest wyższy niż poziom statyczny, ponieważ gdy woda jest wypompowywana, jej poziom spada). Poziom dynamiczny jest zwykle wskazany w certyfikacie odwiertu; pompa musi znajdować się na głębokości co najmniej metra pod wodą, plus margines 2 - 3 m należy przyjąć jako korektę sezonowych wahań poziomu. Odpowiednio, dla studni o głębokości dynamicznej 40 m, zaopatrującej dom z górnym punktem czerpania 6 m nad ziemią, całkowita różnica wysokości wyniesie co n
...ajmniej 40 + 6 + 4 = 50 m.
Drugi punkt to opór hydrauliczny systemu. Nawet w przypadku rur poziomych płyn wymaga ciśnienia, aby przez nie przejść; Zwykle obliczenia opierają się na fakcie, że na każde 10 m rurociągu wymagane jest ciśnienie 0,1 bara lub 1 m. A dla systemu zaopatrzenia w wodę w przeciętnym domu straty oporowe wynoszą około 5 m słupa wody (0,5 bara). W związku z tym, jeśli w naszym przykładzie dom znajduje się 10 m od studni, margines na pokonanie oporu powinien wynosić co najmniej 1 + 5 = 6 m głowy.
A trzeci punkt to ciśnienie w punktach poboru, ponieważ pompa musi nie tylko „wpychać” wodę do kranu, ale także zapewniać ciśnienie wylotowe. Tutaj optymalna wydajność może się różnić w zależności od sytuacji. Na przykład weź co najmniej 1 atm (1 bar), co odpowiada 10 m wysokości.
Tak więc w naszym przykładzie wysokość podnoszenia pompy powinna wynosić co najmniej 50 m (różnica wysokości) + 6 m (rezystancja) + 10 m (wylot) = 66 m. Oczywiście jest to obliczenie dla najbardziej ogólnego przypadku; w szczególnych sytuacjach i formuły mogą się różnić, dla nich sensowne jest odwoływanie się do specjalnych źródeł.Gwint przyłącza
Wielkość wylotu pompy, a raczej wielkość mocowania węża przewidzianego na tym otworze. W hydraulice te wymiary są tradycyjnie używane w calach i ułamkach cala (na przykład 2 "lub 3/4").
Z reguły im wyższa wydajność pompy (patrz odpowiedni punkt), tym większy jest otwór w konstrukcji (aby bez przeszkód mogła przez niego przepływać duża ilość wody). W idealnym przypadku wylot powinien mieć taki sam rozmiar jak mocowanie węża; w przypadku niedopasowania sytuację można oczywiście poprawić za pomocą adapterów, ale ta opcja ma swoje niuanse i nie zawsze ma zastosowanie. W pompach wiertniczych za następujące wartości uważane są:
3/4”,
1”,
1 1/4”,
2”,
2 1/2” i
3”. Są też bardziej ekskluzywne, takie jak 1 1/2”, 4” i 5”.
Moc
Moc pobierana przez silnik pompy podczas normalnej pracy. Mocniejszy silnik jest w stanie zapewnić większą moc i wydajność, ale parametry te nie są bezpośrednio powiązane: dwa modele o podobnej mocy mogą znacznie różnić się praktycznymi cechami. Dlatego w tym sensie parametr ten jest drugorzędny i mniej lub bardziej jednoznacznie opisuje jedynie klasę jednostki jako całości – mocne silniki są charakterystyczne dla modeli o wysokich osiągach. Ale to, na co ta cecha wpływa bezpośrednio, to rzeczywiste zużycie energii; a z nim z kolei wiążą się nie tylko rachunki za prąd, ale także wymagania dotyczące przyłączenia.
Zabezpieczenie przed przeciążeniem
Zabezpieczenie przed przeciążeniem to system zabezpieczający w przypadku przeciążenia pompy głębinowej, gdy jej silnik pracuje ponad swoje możliwości. Może to doprowadzić do awarii silnika, a nawet pożaru. Przeciążeniom zwykle zapobiegają wyłączniki termiczne wprowadzane do konstrukcji pomp.