Paliwo
Rodzaj paliwa, na którym pracuje silnik generatora prądu.
—
Benzyna. Jeden z głównych rodzajów paliw do silników spalinowych. Generatory benzynowe są zwykle tańsze niż generatory z silnikiem Diesel, przy pozostałych warunkach równych, ale są droższe w eksploatacji ze względu na wyższą cenę benzyny; ponadto mają zwykle krótszą żywotność niż z silnikiem Diesel. Dlatego uważa się, że generatory benzynowe dobrze nadają się przede wszystkim jako zapasowe źródło zasilania w przypadku przerw w dostawie prądu.
—
Diesel. Generatory z silnikiem Diesel są zwykle droższe niż generatory benzynowe; z drugiej strony olej napędowy jest tańszy niż benzyna, więc zwiększony koszt może się zwrócić przy regularnym użytkowaniu. Ponadto generatory dieslowskie mają dłuższą żywotność i większy zakres mocy niż generatory benzynowe. Dzięki temu mogą być używane zarówno jako zapasowe, jak i główne źródła zasilania, w tym w obiektach dość „energochłonnych”.
—
Gaz. Zaletami generatorów gazowych jest ich stosunkowo niski poziom hałasu oraz niewielka ilość szkodliwych emisji. Stosowanie gazu jako paliwa wiąże się z pewnymi trudnościami: konieczne jest podłączenie do sieci gazowej lub regularna wymiana specjalnych butli, układ paliwowy jest szczególnie wrażliwy na wycieki itp. Dlatego produkuje się stosunkowo niewiele takich modeli, a większość z nich to stacjonarne generatory o
...dużej mocy, w których wspomniane wady są kompensowane zaletami.
— Benzyna/gaz. Modele zdolne do korzystania z obu tych paliw. Daje to użytkownikowi możliwość wyboru opcji, która najlepiej pasuje do konkretnej sytuacji, a także zmniejsza prawdopodobieństwo pozostawienia bez paliwa w najbardziej nieodpowiednim momencie; przy tym podobne modele są droższe od jednopaliwowych. Parametry techniczne benzyny i gazu zostały szczegółowo opisane powyżej.Moc maksymalna
Maksymalna moc, jaką może dostarczyć generator.
Ta moc jest nieco wyższa niż znamionowa (patrz wyżej), jednak tryb maksymalnej wydajności może być utrzymany tylko przez bardzo krótki czas — w przeciwnym razie wystąpi przeciążenie. Dlatego praktycznym znaczeniem tej cechy jest głównie opisanie sprawności generatora podczas pracy ze zwiększonymi prądami rozruchowymi.
Przypomnijmy, że niektóre rodzaje urządzeń elektrycznych w momencie rozruchu zużywają kilkakrotnie więcej prądu (i odpowiednio mocy) niż w trybie normalnym; jest to typowe głównie dla urządzeń z silnikami elektrycznymi, takich jak elektronarzędzia, lodówki itp. Jednak zwiększona moc do takiego sprzętu jest potrzebna tylko na krótki czas, normalna praca przywracana jest w ciągu kilku sekund. Możesz oszacować charakterystykę rozruchową, mnożąc moc znamionową przez tak zwany współczynnik rozruchu. W przypadku sprzętu jednego typu jest mniej więcej taki sam (1,2 — 1,3 dla większości elektronarzędzi, 2 dla kuchenki mikrofalowej, 3,5 dla klimatyzatora itp.); bardziej szczegółowe dane dostępne są w dedykowanych źródłach.
W warunkach idealnych maksymalna moc generatora nie powinna być niższa niż całkowita moc szczytowa podłączonego obciążenia — to znaczy moc rozruchowa sprzętu o współczynniku rozruchu większym niż 1 plus moc znamionowa wszystkich innych urządzeń. Zminimalizuje to prawdopodobieństwo przeciążenia.
Uzwojenie alternatora (prądnicy)
—
Miedziane. Uzwojenie miedziane jest typowe dla zaawansowanych generatorów. Miedziany alternator charakteryzuje się wysoką przewodnością i niską rezystancją. Przewodność miedzi jest 1,7 razy większa niż przewodność aluminium, takie uzwojenie mniej się nagrzewa, a połączenia z tego metalu mogą wytrzymać spadki temperatury i obciążenia wibracyjne. Wśród wad miedzianego uzwojenia można tylko zauważyć wysoki koszt alternatora. Poza tym generatory z uzwojeniem miedzianym charakteryzują się wysoką niezawodnością i trwałością.
— Aluminiowe. Aluminiowe uzwojenie alternatora jest typowe dla niedrogich generatorów. Główne zalety aluminium to niewielka waga i niska cena, poza tym takie uzwojenie z reguły jest gorsze od analogów miedzianych. Na powierzchni aluminium tworzy się warstwa tlenkowa, która pojawia się wszędzie, nawet w miejscach lutowania stykowego. Warstwa tlenkowa zacieśnia styki i zapobiega pewnemu utrzymywaniu aluminiowych przewodów przez zewnętrzny oplot ochronny.
Pojemność silnika
Pojemność silnika w generatorze benzynowym lub dieslowskim (patrz „Paliwo”). W teorii większa pojemność zwykle oznacza większą moc, ale w praktyce nie jest to takie proste. Po pierwsze, moc właściwa silnie zależy od rodzaju paliwa, a w urządzeniach benzynowych także od rodzaju silnika spalinowego (patrz wyżej). Po drugie, podobne silniki o tej samej mocy mogą mieć różne pojemności i tutaj jest praktyczny punkt: przy tej samej mocy większy silnik zużywa więcej paliwa, ale sam może być tańszy.
Zużycie paliwa (obciążenie 50%)
Zużycie paliwa przez generator benzynowy lub wysokoprężny, a w przypadku modeli kombinowanych — przy zasilaniu benzyną (patrz "Paliwo").
Mocniejszy silnik nieuchronnie oznacza większe zużycie paliwa; jednak modele o tej samej mocy silnika mogą się pod tym względem różnić. W takich przypadkach warto wziąć pod uwagę, że model o mniejszym zużyciu zazwyczaj kosztuje więcej, ale ta różnica może dość szybko się zwrócić, zwłaszcza przy regularnym użytkowaniu. Ponadto, znając zużycie paliwa i pojemność zbiornika, możesz określić, na jak długo wystarczy jedno tankowanie; jednak w modelach inwerterowych przy częściowym obciążeniu rzeczywisty czas pracy może okazać się zauważalnie wyższy niż teoretyczny, aby uzyskać więcej szczegółów szczegółów patrz „Alternator (prądnica)”.
Łączna liczba gniazd
Całkowita liczba gniazd 230 i/lub 400 V przewidziana w konstrukcji urządzenia.
Liczba ta odpowiada liczbie urządzeń, które można jednocześnie podłączyć do agregatu bez użycia rozgałęźników, przedłużaczy itp. Co więcej, jeśli mówimy o modelu trójfazowym (patrz "Napięcie wyjściowe") z różnymi typami gniazd — liczbę tych i innych należy doprecyzować osobno, gdyż w różnych modelach zestaw może być różny. Na przykład, agregat dla którego zadeklarowana jest obecność
3 gniazd, może mieć 1 gniazdo trójfazowe i 2 gniazda jednofazowe lub 2 gniazda trójfazowe i 1 gniazdo jednofazowe. Ogólnie rzecz biorąc, najskromniejsze współczesne agregaty wyposażone są w
1 gniazdo, natomiast modele z
2 gniazdami są bardziej rozpowszechnione; w najmocniejszych modelach liczba ta może wynosić
4 gniazda i więcej.
Należy dodać, że możliwości podłączenia różnych urządzeń są ograniczone nie tylko liczbą gniazd, ale także mocą znamionową agregatu prądotwórczego (szczegóły powyżej).
Gniazda 230 V
Liczba gniazd o napięciu 230 V przewidziana w konstrukcji generatora, a także rodzaj złączy stosowanych w tych gniazdach.
Rodzaj złącza w tym przypadku jest wskazywany według maksymalnego prądu dozwolonego dla gniazda — na przykład „2 szt. na 16 A”. Najpopularniejsze opcje dla gniazd 230 V to
16 A,
32 A i 63 A. Podkreślamy, że ampery w tym oznaczeniu nie są rzeczywistym prądem, jaki może wydać generator, ale własnym ograniczeniem gniazda; rzeczywiste natężenie prądu jest zwykle zauważalnie niższe. Mówiąc prościej, jeśli na przykład generator ma gniazdo 32 A, prąd wyjściowy na nim nie osiągnie 32 A; konkretna liczba amperów będzie zależeć od mocy znamionowej i maksymalnej urządzenia (patrz powyżej). Jeśli więc dla naszego przykładu przyjmiemy moc znamionową 5 kW i moc maksymalną 6 kW, to do gniazda 230 V taki generator może dać nie więcej niż 5 kW / 230 V = 22,7 A nominalnie i 6 kW / 230 V = 27, 3 A szczytowo. Jeśli moc trzeba podzielić na kilka gniazd, to odpowiednio będzie jeszcze mniej.
Jeśli chodzi o poszczególne typy złączy, to im wyższy prąd dopuszczalny dla gniazda, tym wyższe wymagania dotyczące jego niezawodności i jakości ochrony. W związku z tym z reguły do gniazd o większej mocy można podłączać wtyczki o mniejszej mocy (bezpośrednio lub przez przejściówkę), ale nie odwrotnie. Jeśli gniazd jest kilka, to ze względu na ich rodzaj można z całą pewnością oszacować rozkład między n
...imi całej mocy generatora: między dwoma identycznymi złączami moc ta jest zwykle dzielona równo, a na gniazdo o większej liczbie amperów więcej przypada i mocy. Jednak szczegółowe informacje w tej sprawie należy wyjaśniać w każdym przypadku oddzielnie; warto również rozważyć ewentualne gniazda 400 V (patrz poniżej).Wyjście 12 V
Obecność w agregacie prądotwórczym
wyjścia z prądem stałym i napięciem 12 V. Głównym przeznaczeniem tego wyjścia jest ładowanie akumulatorów samochodowych oraz zasilanie urządzeń pierwotnie dedykowanych do samochodów (standardowe napięcie pokładowe w samochodach osobowych to 12 V).
W agregatach prądotwórczych spotyka się następujące odmiany wyjść 12 V:
— Klemy. Klemy służą do bezpośredniego łączenia przewodów bez użycia wtyczek. Takie połączenie jest najbardziej niezawodne.
— Gniazdo. Gniazdo wtykowe z dwoma płaskimi bolcami, przeznaczone do podłączania urządzeń o napięciu 12 V. Otwory wtykowe występują w różnych układach, na co należy zwrócić szczególną uwagę.
— Zapalniczka samochodowa. Tak zwane gniazdo samochodowe, które w wielu samochodach łączone jest z gniazdem zapalniczki (stąd nazwa). Złącza takie służą do zasilania różnych urządzeń i akcesoriów motoryzacyjnych.
Poziom hałasu
Poziom hałasu wytwarzanego przez generator podczas normalnej pracy. Im mniej hałasuje agregat, tym wygodniej się z niego korzysta, tym bliżej ludzi można go umieścić, jednak tym wyższa jest jego cena, przy pozostałych warunkach równych.
Należy również pamiętać, że generator z silnikiem spalinowym w zasadzie jest dość hałaśliwym sprzętem. Tak więc nawet "najcichsze" agregaty wydają
50 – 60 dB – to głośność rozmowy na tonach od średnich do wysokich. Większość współczesnych generatorów wytwarzają hałas na poziomie
61 – 70 dB (poziom głośnej rozmowy), a nawet
71 – 80 dB (głośność krzyku). W najgłośniejszych modelach wartość ta może
przekraczać 80 dB, osiągając czasami wartości 120 dB (hałas młota pneumatycznego). Jednocześnie zauważamy, że poziom hałasu nie jest bezpośrednio związany z mocą: na przykład wśród agregatów o poziomie hałasu 80 dB lub więcej są zarówno modele ciężkie, jak i o stosunkowo małej mocy.