Długość kabla
Długość kabla używanego do podłączenia listwy przeciwprzepięciowej do sieci.
Im dłuższy kabel, tym dalej od gniazdka można zainstalować urządzenie. Z drugiej strony długi kabel może być niewygodny na krótkich dystansach. Modele na cewce są pozbawione tej wady (patrz "Typ"), ten szczegół jest kompensowany faktyczną obecnością cewki, ale wyróżniają się dużymi wymiarami i dużą wagą. Dlatego przy wyborze nie zawsze warto gonić za maksymalną długością drutu.
Moc maksymalna
Najwyższy pobór mocy podłączonych urządzeń, który listwa przeciwprzepięciowa jest w stanie przenieść bez konsekwencji (a dokładniej, z jaką może pracować przez nieograniczony czas bez przeciążeń, przegrzania itp.).
Ograniczenie to wynika z faktu, że im wyższa moc przy tym samym napięciu, tym wyższy prąd przepływający przez urządzenie (w tym przypadku przez filtr mocy); i prądy niezgodne z projektem mogą prowadzić do awarii, a nawet wypadków. I chociaż, aby uniknąć tych konsekwencji, nowoczesne filtry często zapewniają różne rodzaje ochrony (patrz wyżej), ale uruchomienie ochrony jest nadal nienormalną sytuacją, której lepiej unikać. Dlatego warto dobrać model dla tego parametru tak, aby maksymalna moc filtra była przynajmniej nie mniejsza niż sumaryczny pobór mocy obciążenia. I najlepiej mieć margines 20-30% - da to dodatkowe gwarancje w przypadku różnych odchyleń w działaniu podłączonego sprzętu.
Warto również zwrócić uwagę na sytuacje, w których planowane jest zastosowanie filtra do tzw. obciążenie reaktywne - urządzenia elektryczne, które szeroko wykorzystują obwody kondensatorowe i / lub indukcyjne, takie jak elektronarzędzia lub agregaty chłodnicze. Całkowity pobór mocy takich urządzeń (zapisany w woltoamperach) może być znacznie wyższy niż moc czynna (która jest wyrażona w watach). Zalecana moc filtra sieciowego w takich przypadkach jest obliczana za pomocą specjalnych wzorów, które można znaleźć w odpowiednich źródłach.
Maks. obciążenie
Maksymalny prąd, przez który urządzenie przeciwprzepięciowe może przechodzić przez nieograniczony czas bez ryzyka przegrzania, awarii i innych problemów.
Parametr ten jest bezpośrednio związany z maksymalną mocą filtra (patrz wyżej): moc to prąd pomnożony przez napięcie. Tak więc na przykład dla standardowego modelu 230 V o maksymalnej mocy 2200 W maksymalne obciążenie wyniesie 10 A. Należy pamiętać, że charakterystyka nowoczesnych filtrów może nie odpowiadać podobnym obliczeniom - na przykład te same 10 A może być deklarowane dla modelu 2500 W ... Nie jest to jednak coś nadzwyczajnego: różnicę w liczbach można odnieść do mocy czynnej i biernej (patrz „Moc maksymalna”), charakterystykę filtrów jednofazowych (bez gniazd 400 V, patrz wyżej) można podać jak dla 230 V, a więc dla 230 V, a nawet 240 V, liczby można zaokrąglać dla czytelności itp.
W każdym razie praktyczna wartość maksymalnego obciążenia jest taka sama jak maksymalna moc: nie powinna być mniejsza niż prąd dostarczany do podłączonych urządzeń elektrycznych (w przeciwnym razie może działać ochrona, a nawet awaria). I używają tego parametru wraz z mocą maksymalną, ponieważ w niektórych przypadkach łatwiej jest ocenić charakterystykę obciążenia (i wymagania dotyczące filtra) po poborze prądu, a nie po mocy.
Maks. pochłanianie energii
Maksymalna absorpcja energii zapewniana przez filtr sieciowy, czyli maksymalna energia impulsu, przy której urządzenie może ją bezpiecznie pochłonąć i rozproszyć, w pełni chroniąc podłączone obciążenie. Im wyższy wskaźnik ten, tym bardziej niezawodny filtr, tym silniejsze skoki napięcia, z którymi może sobie poradzić. W niedrogich modelach maksymalna absorpcja to kilkadziesiąt dżuli, w najbardziej zaawansowanych może przekraczać 1000 J, a nawet 2000 J.
Przekrój przewodu
Pole przekroju przewodu służącego do podłączenia filtra do sieci. Im większy przekrój, tym grubszy drut, tym bardziej jest niezawodny i tym większy prąd może przepłynąć bez przegrzania. W związku z tym w przypadku urządzeń o dużej mocy wymagane są
grube przewody (1,5 mm² i
2,5 mm²). Jednocześnie współcześni producenci z reguły dobierają powierzchnię przekroju w taki sposób, aby zagwarantować bezpieczną pracę filtra przy deklarowanej mocy maksymalnej (patrz wyżej). Dlatego w praktyce należy wybrać model z grubszym kablem niż inne podobne urządzenia, jeśli ma być używany w niestabilnych sieciach, w których często występują przepięcia. Jeśli powierzchnia przekroju wydaje Ci się zbyt mała (
0,75 mm² lub
1 mm²) dla deklarowanej mocy, istnieją specjalne formuły, które pozwalają sprawdzić zasadność takich wątpliwości.
USB A
Liczba portów
USB A do ładowania, przewidziana w konstrukcji listwy przeciwprzepięciowej.
Takie porty nie pełnią żadnej innej funkcji niż zasilanie i ładowanie urządzeń zewnętrznych, takich jak smartfony czy tablety. Obecność takich złączy w listwie przeciwprzepięciowej może być szczególnie wygodna, gdy nie ma pod ręką adaptera „230-to-USB”, a portów USB w komputerze lub laptopie jest niewiele i używanie ich do ładowania to „niedopuszczalny luksus” .
Maks. prąd ładowania
Prąd emitowany przez złącze USB po podłączeniu do niego naładowanego gadżetu.
Im wyższy prąd, tym szybciej można naładować akumulator. Jednak przy wyborze należy mieć na uwadze, że aby wykorzystać dużą siłę prądową, podłączone urządzenie również musi ją obsługiwać. Zasadniczo są
USB o natężeniu prądu 2,1 A,
2,4 A i
3 A.
Warto również zauważyć, że przy korzystaniu z wielu portów USB jednocześnie znacznie zmniejsza się natężenie prądu.
Moc (przy 1 urządzeniu)
Maksymalna moc, jaką może wytworzyć port USB po podłączeniu tylko jednego gadżetu.
Większa moc wyjściowa przyspiesza proces ładowania. Jednocześnie z tym parametrem wiąże się wiele niuansów. Po pierwsze, odpowiednią moc musi obsługiwać nie tylko port, ale także ładowany gadżet – w przeciwnym razie prędkość procesu będzie ograniczona charakterystyką gadżetu. Po drugie, aby w pełni wykorzystać możliwości, konieczne może być wsparcie nie tylko odpowiedniej mocy ładowania, ale także konkretnej technologii szybkiego ładowania. Po trzecie, w filtrach z kilkoma złączami ładowania maksymalną moc na urządzenie można osiągnąć tylko wtedy, gdy pozostałe porty nie są wykorzystywane.
Zabezpieczenia
-
Przeciw zwarciu. System ochrony przed zwarciem (SC) - sytuacje, w których rezystancja w obwodzie gwałtownie spada, na przykład z powodu wniknięcia metalowego przedmiotu między styki gniazda. Reaguje na nagły wzrost natężenia i otwiera obwód, zapobiegając uszkodzeniom sprzętu i pożarom.
-
Od spadku napięcia. Ochrona przed przepięciami. Filtr z tą funkcją jest w stanie całkowicie odciąć zasilanie przekraczające dopuszczalną szybkość ustawioną przez producenta, chroniąc obciążenie przed uszkodzeniem. Należy pamiętać, że zabezpieczenie przeciwprzepięciowe nie jest w stanie zastąpić pełnoprawnego stabilizatora lub przekaźnika napięciowego; jednak w mniej lub bardziej wysokiej jakości sieciach, które nie podlegają silnym wahaniom, wystarczy filtr.
-
Przeciw przeciążeniu. Przeciążenie oznacza w tym przypadku sytuację, w której moc obciążenia przekracza wartości dopuszczalne dla danego filtra sieciowego. Sytuacja ta jest podobna do opisanego powyżej zwarcia – przez filtr przepływają duże prądy; jednak przeciążenie ma swoją specyfikę, więc ochronę przed nim można zapewnić jako oddzielny system. Jednak zasada działania takich systemów jest klasyczna: po przekroczeniu dopuszczalnej mocy odcina zasilanie, zapobiegając awariom i pożarom.
-
Przeciw przepięciom (warystor). Rodzaj ochrony przed krótkotrwałymi przepięciami w si
...eci, zbudowany na warystorach - rezystorach o zmiennej rezystancji. Rezystancja takiego rezystora w normalnych warunkach wynosi miliony omów, ale gwałtownie spada, jeśli napięcie wejściowe wzrośnie powyżej pewnej wartości. Dzięki temu w trybie normalnym ochrona praktycznie nie wpływa na obwód, a podczas impulsu wysokiego napięcia nadwyżka energii „łączy się” przez warystor i rozprasza się w postaci ciepła. Zdolność warystorów do pochłaniania energii nie jest nieskończona, dlatego w celu ochrony przed przegrzaniem zwykle w konstrukcji przewidziano czujnik temperatury z wyłącznikiem.